論文の概要: Towards Accurate Forecasting of Renewable Energy : Building Datasets and Benchmarking Machine Learning Models for Solar and Wind Power in France
- arxiv url: http://arxiv.org/abs/2504.16100v1
- Date: Mon, 14 Apr 2025 15:30:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.825582
- Title: Towards Accurate Forecasting of Renewable Energy : Building Datasets and Benchmarking Machine Learning Models for Solar and Wind Power in France
- Title(参考訳): 再生可能エネルギーの正確な予測に向けて : フランスにおける太陽光発電と風力発電のためのデータセットの構築とベンチマーク機械学習モデル
- Authors: Eloi Lindas, Yannig Goude, Philippe Ciais,
- Abstract要約: 本研究は、フランスの国規模で太陽光発電と風力発電を予測するための総合的な方法論を提案する。
2012年から2023年にかけて、RTEから毎日の電力生産データを使用してデータセットが構築されている。
空間的に解決された気象データを扱うための3つのモデリング手法について検討した。
- 参考スコア(独自算出の注目度): 1.2289361708127877
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate prediction of non-dispatchable renewable energy sources is essential for grid stability and price prediction. Regional power supply forecasts are usually indirect through a bottom-up approach of plant-level forecasts, incorporate lagged power values, and do not use the potential of spatially resolved data. This study presents a comprehensive methodology for predicting solar and wind power production at country scale in France using machine learning models trained with spatially explicit weather data combined with spatial information about production sites capacity. A dataset is built spanning from 2012 to 2023, using daily power production data from RTE (the national grid operator) as the target variable, with daily weather data from ERA5, production sites capacity and location, and electricity prices as input features. Three modeling approaches are explored to handle spatially resolved weather data: spatial averaging over the country, dimension reduction through principal component analysis, and a computer vision architecture to exploit complex spatial relationships. The study benchmarks state-of-the-art machine learning models as well as hyperparameter tuning approaches based on cross-validation methods on daily power production data. Results indicate that cross-validation tailored to time series is best suited to reach low error. We found that neural networks tend to outperform traditional tree-based models, which face challenges in extrapolation due to the increasing renewable capacity over time. Model performance ranges from 4% to 10% in nRMSE for midterm horizon, achieving similar error metrics to local models established at a single-plant level, highlighting the potential of these methods for regional power supply forecasting.
- Abstract(参考訳): 非分散性再生可能エネルギー源の正確な予測はグリッド安定性と価格予測に不可欠である。
地域電力供給予測は、通常、プラントレベルの予測のボトムアップアプローチを通じて間接的に行われ、タグ付けされた電力値が組み込まれ、空間的に解決されたデータの可能性を使用しない。
本研究は、空間的明示的な気象データと生産地容量の空間情報を組み合わせた機械学習モデルを用いて、フランスのカントリースケールにおける太陽・風力発電予測のための総合的方法論を提案する。
データセットは2012年から2023年にかけて構築され、RTE(ナショナルグリッドオペレーター)からの毎日の電力生産データをターゲット変数とし、ERA5からの毎日の気象データ、生産現場の容量と場所、電力価格を入力特徴とする。
3つのモデリング手法を用いて, 地域平均化, 主成分分析による次元減少, 複雑な空間関係を利用するコンピュータビジョンアーキテクチャについて検討した。
この研究は、日々の電力生産データに対するクロスバリデーション手法に基づいて、最先端の機械学習モデルとハイパーパラメータチューニングアプローチをベンチマークする。
その結果,時系列に適合したクロスバリデーションが低誤差に到達するのに最適であることが示唆された。
ニューラルネットワークは、時間とともに再生可能容量が増加するため、外挿の課題に直面している伝統的なツリーベースモデルを上回る傾向にあることがわかった。
モデル性能は、中間地平線におけるnRMSEの4%から10%の範囲で、単一プラントレベルで確立された局所モデルに類似した誤差指標を達成し、これらの手法の地域電力供給予測の可能性を強調している。
関連論文リスト
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - SolNet: Open-source deep learning models for photovoltaic power forecasting across the globe [0.0]
SolNetは、新しい汎用多変量太陽発電予測器である。
我々はSolNetがデータスカース設定よりも予測性能を向上させることを示す。
転校学習実践者に対するガイドラインと考察を行う。
論文 参考訳(メタデータ) (2024-05-23T12:00:35Z) - Location Agnostic Source-Free Domain Adaptive Learning to Predict Solar
Power Generation [0.0]
本稿では,気象特性を用いた太陽発電を推定するためのドメイン適応型ディープラーニングフレームワークを提案する。
フィードフォワード深部畳み込みネットワークモデルは、既知の位置データセットを教師付きでトレーニングし、後に未知の場所の太陽エネルギーを予測するために使用される。
我々の手法では、カリフォルニア(CA)、フロリダ(FL)、ニューヨーク(NY)の順応的でない手法と比較して、太陽エネルギー予測精度が10.47 %、7.44 %、5.11%の改善が見られた。
論文 参考訳(メタデータ) (2024-01-24T02:08:48Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Secure short-term load forecasting for smart grids with
transformer-based federated learning [0.0]
電力負荷予測は、需要と供給収支を補助するスマートグリッドの中で不可欠なタスクである。
きめ細かい負荷プロファイルは、ユーザの消費電力の挙動を公開できるため、プライバシやセキュリティ上の懸念が高まる。
本稿では,短期電力負荷予測のためのフェデレーション学習を用いた変圧器を用いた新しい深層学習手法を提案する。
論文 参考訳(メタデータ) (2023-10-26T15:27:55Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - Solar Power Prediction Using Machine Learning [0.0]
本稿では,99%のAUC測定値を用いて,高精度な太陽光発電予測手法を提案する。
このアプローチには、データ収集、前処理、機能選択、モデル選択、トレーニング、評価、デプロイメントが含まれる。
訓練された機械学習モデルは生産環境にデプロイされ、ソーラー発電に関するリアルタイム予測に使用することができる。
論文 参考訳(メタデータ) (2023-03-11T06:31:46Z) - Local-Global Methods for Generalised Solar Irradiance Forecasting [1.4452289368758378]
我々は、新しい場所で太陽の光を正確に予測できるモデルを作成することができることを示した。
これは、新たに設置されたソーラーファームと国内施設の両方の計画と最適化を促進する可能性がある。
論文 参考訳(メタデータ) (2023-03-10T16:13:35Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Sky-image-based solar forecasting using deep learning with
multi-location data: training models locally, globally or via transfer
learning? [0.0]
ディープラーニングモデルをトレーニングする上で最大の課題のひとつは、ラベル付きデータセットの可用性だ。
近年、ますます多くの天空画像データセットがオープンソース化され、正確で信頼性の高い太陽予測手法の開発は、大きな成長の可能性を秘めている。
論文 参考訳(メタデータ) (2022-11-03T19:25:28Z) - Physics Informed Shallow Machine Learning for Wind Speed Prediction [66.05661813632568]
イタリアの32カ所の標高10mの風速計から観測された大量の風のデータセットを分析した。
我々は、過去の風の履歴を用いて教師あり学習アルゴリズムを訓練し、その価値を将来予測する。
最適設計と性能は場所によって異なることがわかった。
論文 参考訳(メタデータ) (2022-04-01T14:55:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。