論文の概要: No Longer Trending on Artstation: Prompt Analysis of Generative AI Art
- arxiv url: http://arxiv.org/abs/2401.14425v1
- Date: Wed, 24 Jan 2024 08:03:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-29 16:58:24.827281
- Title: No Longer Trending on Artstation: Prompt Analysis of Generative AI Art
- Title(参考訳): アートステーションのトレンドが長くない - 生成AIアートのプロンプト分析
- Authors: Jon McCormack, Maria Teresa Llano, Stephen James Krol, Nina Rajcic
- Abstract要約: 私たちは300万以上のプロンプトとそれらが生成する画像を収集し、分析します。
本研究は, 表面美学, 文化規範の強化, 一般的な表現, イメージに重点を置いていることを示す。
- 参考スコア(独自算出の注目度): 7.64671395172401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image generation using generative AI is rapidly becoming a major new source
of visual media, with billions of AI generated images created using diffusion
models such as Stable Diffusion and Midjourney over the last few years. In this
paper we collect and analyse over 3 million prompts and the images they
generate. Using natural language processing, topic analysis and visualisation
methods we aim to understand collectively how people are using text prompts,
the impact of these systems on artists, and more broadly on the visual cultures
they promote. Our study shows that prompting focuses largely on surface
aesthetics, reinforcing cultural norms, popular conventional representations
and imagery. We also find that many users focus on popular topics (such as
making colouring books, fantasy art, or Christmas cards), suggesting that the
dominant use for the systems analysed is recreational rather than artistic.
- Abstract(参考訳): 生成的AIを用いた画像生成は、急速にビジュアルメディアの主要な新しいソースとなりつつあり、過去数年間、安定拡散やミッドジャーニーのような拡散モデルを用いて何十億ものAI生成画像が作成されている。
本稿では,300万以上のプロンプトと生成した画像を収集し,分析する。
自然言語処理,話題分析,視覚化手法を用いることで,人々がテキストプロンプトをどのように使っているか,これらのシステムがアーティストに与える影響,より広い範囲で促進する視覚文化について,総合的に理解することを目指している。
本研究は,表面美学,文化規範の強化,一般的な表現とイメージに着目したものである。
また,多くのユーザが人気トピック(カラーブック,ファンタジーアート,クリスマスカードなど)に注目していることから,分析対象のシステムの利用は芸術的ではなくレクリエーション的であることを示唆している。
関連論文リスト
- GalleryGPT: Analyzing Paintings with Large Multimodal Models [64.98398357569765]
美術品の分析は、個人の審美性を豊かにし、批判的思考能力を促進することができる芸術鑑賞のための重要かつ基本的な技術である。
アートワークを自動解析する以前の作業は、主に分類、検索、その他の単純なタスクに焦点を当てており、AIの目標とは程遠い。
LLaVAアーキテクチャに基づいて微調整されたGalleryGPTと呼ばれる,絵画解析のための優れた大規模マルチモーダルモデルを提案する。
論文 参考訳(メタデータ) (2024-08-01T11:52:56Z) - The role of interface design on prompt-mediated creativity in Generative
AI [0.0]
2つのジェネレーティブAIプラットフォームから145,000以上のプロンプトを分析します。
その結果,利用者は以前訪れた概念の活用よりも,新たなトピックを探求する傾向にあることがわかった。
論文 参考訳(メタデータ) (2023-11-30T22:33:34Z) - State of the Art on Diffusion Models for Visual Computing [191.6168813012954]
本稿では,拡散モデルの基本数学的概念,実装の詳細,および一般的な安定拡散モデルの設計選択を紹介する。
また,拡散に基づく生成と編集に関する文献の急速な発展を概観する。
利用可能なデータセット、メトリクス、オープンな課題、社会的意味について議論する。
論文 参考訳(メタデータ) (2023-10-11T05:32:29Z) - ITI-GEN: Inclusive Text-to-Image Generation [56.72212367905351]
本研究では,人書きプロンプトに基づいて画像を生成する包括的テキスト・画像生成モデルについて検討する。
いくつかの属性に対して、画像はテキストよりも概念を表現的に表現できることを示す。
Inclusive Text-to- Image GENeration に容易に利用可能な参照画像を活用する新しいアプローチ ITI-GEN を提案する。
論文 参考訳(メタデータ) (2023-09-11T15:54:30Z) - AI-Generated Imagery: A New Era for the `Readymade' [0.7386189738262202]
本稿では、生成型AIシステムによって生成されたデジタルイメージが、どのようにしてアートと呼ばれるようになったかを検討することを目的とする。
我々は、既存の哲学的枠組みと言語理論を用いて、AI生成画像の一部が、芸術として考慮すべき「準備済み」として提示できることを示唆している。
論文 参考訳(メタデータ) (2023-07-12T09:25:56Z) - StyleAvatar3D: Leveraging Image-Text Diffusion Models for High-Fidelity
3D Avatar Generation [103.88928334431786]
高品質な3Dアバターを製作するための新しい手法を提案する。
データ生成には事前学習した画像テキスト拡散モデルとGANベースの3次元生成ネットワークを用いて訓練を行う。
提案手法は、生産されたアバターの視覚的品質と多様性の観点から、現在の最先端手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-30T13:09:21Z) - Language Does More Than Describe: On The Lack Of Figurative Speech in
Text-To-Image Models [63.545146807810305]
テキスト・ツー・イメージ拡散モデルでは、テキスト入力プロンプトから高品質な画像を生成することができる。
これらのモデルは、コンテンツベースのラベル付けプロトコルから収集されたテキストデータを用いて訓練されている。
本研究では,現在使用されているテキスト・画像拡散モデルのトレーニングに使用されている公開テキストデータの感情性,目的性,抽象化の程度を特徴付ける。
論文 参考訳(メタデータ) (2022-10-19T14:20:05Z) - A domain adaptive deep learning solution for scanpath prediction of
paintings [66.46953851227454]
本稿では,ある絵画の視覚的体験における視聴者の眼球運動分析に焦点を当てた。
我々は、人間の視覚的注意を予測するための新しいアプローチを導入し、人間の認知機能に影響を及ぼす。
提案した新しいアーキテクチャは、画像を取り込んでスキャンパスを返す。
論文 参考訳(メタデータ) (2022-09-22T22:27:08Z) - A Taxonomy of Prompt Modifiers for Text-To-Image Generation [6.903929927172919]
本稿では,3ヶ月のエスノグラフィー研究に基づいて,オンラインコミュニティの実践者が使用する6種類のプロンプト修飾剤を同定する。
プロンプト修飾子の新たな分類法は、テキスト・ツー・イメージ・ジェネレーションの実践を研究するための概念的な出発点となる。
本稿では,人間-コンピュータインタラクション分野における新しい創造的実践の機会について論じる。
論文 参考訳(メタデータ) (2022-04-20T06:15:50Z) - A Framework and Dataset for Abstract Art Generation via CalligraphyGAN [0.0]
本研究では,コンディショナル・ジェネレーティブ・アドバイザリ・ネットワークと文脈ニューラル言語モデルに基づく創造的枠組みを提示し,抽象アートワークを生成する。
私たちの作品は中国書道に触発され、字そのものが美的絵画である独特の視覚芸術形式である。
論文 参考訳(メタデータ) (2020-12-02T16:24:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。