論文の概要: Context-aware Multimodal AI Reveals Hidden Pathways in Five Centuries of Art Evolution
- arxiv url: http://arxiv.org/abs/2503.13531v1
- Date: Sat, 15 Mar 2025 10:45:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:18:34.498983
- Title: Context-aware Multimodal AI Reveals Hidden Pathways in Five Centuries of Art Evolution
- Title(参考訳): コンテキスト認識型マルチモーダルAIは、アート進化の5つのセンチュリーに隠された経路を発見
- Authors: Jin Kim, Byunghwee Lee, Taekho You, Jinhyuk Yun,
- Abstract要約: 最先端の生成AI、特に安定拡散を使って、500年の西洋絵画を分析します。
以上の結果から,形式的要素よりも芸術的期間,様式,個人芸術家の文脈的情報の違いが明らかとなった。
我々の生成実験は、将来的な文脈を歴史的美術品に浸透させ、美術品の進化軌道を再現することに成功している。
- 参考スコア(独自算出の注目度): 1.8435193934665342
- License:
- Abstract: The rise of multimodal generative AI is transforming the intersection of technology and art, offering deeper insights into large-scale artwork. Although its creative capabilities have been widely explored, its potential to represent artwork in latent spaces remains underexamined. We use cutting-edge generative AI, specifically Stable Diffusion, to analyze 500 years of Western paintings by extracting two types of latent information with the model: formal aspects (e.g., colors) and contextual aspects (e.g., subject). Our findings reveal that contextual information differentiates between artistic periods, styles, and individual artists more successfully than formal elements. Additionally, using contextual keywords extracted from paintings, we show how artistic expression evolves alongside societal changes. Our generative experiment, infusing prospective contexts into historical artworks, successfully reproduces the evolutionary trajectory of artworks, highlighting the significance of mutual interaction between society and art. This study demonstrates how multimodal AI expands traditional formal analysis by integrating temporal, cultural, and historical contexts.
- Abstract(参考訳): マルチモーダル生成AIの台頭は、テクノロジとアートの交わりを変革し、大規模なアートワークに深い洞察を与えている。
その創造的能力は広く研究されてきたが、潜伏空間でアートワークを表現する可能性はまだ過小評価されている。
我々は最先端の生成AI、特に安定拡散を用いて、形式的側面(eg,色)と文脈的側面(eg,主題)の2種類の潜在情報を抽出することにより、500年間の西洋絵画の分析を行う。
以上の結果から,形式的要素よりも芸術的期間,様式,個人芸術家の文脈的情報の違いが明らかとなった。
さらに,絵画から抽出した文脈キーワードを用いて,芸術的表現が社会的変化とともにどのように進化していくかを示す。
我々の生成実験は、歴史的美術品に先進的な文脈を注入し、芸術品の進化的軌道を再現し、社会と芸術の相互相互作用の重要性を強調している。
この研究は、時間的、文化的、歴史的文脈を統合することで、マルチモーダルAIが従来の形式分析をどのように拡張するかを示す。
関連論文リスト
- Diffusion-Based Visual Art Creation: A Survey and New Perspectives [51.522935314070416]
本調査は,拡散に基づく視覚芸術創造の新たな領域を探求し,その発展を芸術的,技術的両面から検討する。
本研究は,芸術的要件が技術的課題にどのように変換されるかを明らかにし,視覚芸術創造における拡散法の設計と応用を強調した。
我々は、AIシステムが芸術的知覚と創造性において人間の能力をエミュレートし、潜在的に増強するメカニズムに光を当てることを目指している。
論文 参考訳(メタデータ) (2024-08-22T04:49:50Z) - GalleryGPT: Analyzing Paintings with Large Multimodal Models [64.98398357569765]
美術品の分析は、個人の審美性を豊かにし、批判的思考能力を促進することができる芸術鑑賞のための重要かつ基本的な技術である。
アートワークを自動解析する以前の作業は、主に分類、検索、その他の単純なタスクに焦点を当てており、AIの目標とは程遠い。
LLaVAアーキテクチャに基づいて微調整されたGalleryGPTと呼ばれる,絵画解析のための優れた大規模マルチモーダルモデルを提案する。
論文 参考訳(メタデータ) (2024-08-01T11:52:56Z) - Equivalence: An analysis of artists' roles with Image Generative AI from Conceptual Art perspective through an interactive installation design practice [16.063735487844628]
本研究では、アーティストが高度なテキストから画像生成AIモデルとどのように相互作用するかを検討する。
この枠組みを実証するために,「等価性」と題されたケーススタディでは,ユーザの音声入力を連続的に変化する絵画に変換する。
この研究は、アーティストの役割に対する理解を深め、画像生成AIで作成されたアートに固有の創造的側面に対する深い評価を促進することを目的としている。
論文 参考訳(メタデータ) (2024-04-29T02:45:23Z) - AI Art Neural Constellation: Revealing the Collective and Contrastive
State of AI-Generated and Human Art [36.21731898719347]
我々は、人間の芸術遺産の文脈内でAI生成芸術を位置づけるための包括的な分析を行う。
私たちの比較分析は、ArtConstellationと呼ばれる広範なデータセットに基づいています。
鍵となる発見は、1800-2000年に作られた現代美術の原理とAIが生成したアートアートが視覚的に関連していることである。
論文 参考訳(メタデータ) (2024-02-04T11:49:51Z) - CreativeSynth: Creative Blending and Synthesis of Visual Arts based on
Multimodal Diffusion [74.44273919041912]
大規模なテキスト・画像生成モデルは印象的な進歩を遂げ、高品質な画像を合成する能力を示している。
しかし、これらのモデルを芸術的な画像編集に適用することは、2つの重要な課題を提起する。
我々は,マルチモーダル入力をコーディネートする拡散モデルに基づく,革新的な統一フレームワークCreative Synthを構築した。
論文 参考訳(メタデータ) (2024-01-25T10:42:09Z) - Vision+X: A Survey on Multimodal Learning in the Light of Data [64.03266872103835]
様々なソースからのデータを組み込んだマルチモーダル機械学習が,ますます普及している研究分野となっている。
我々は、視覚、音声、テキスト、動きなど、各データフォーマットの共通点と特異点を分析する。
本稿では,表現学習と下流アプリケーションレベルの両方から,マルチモーダル学習に関する既存の文献を考察する。
論文 参考訳(メタデータ) (2022-10-05T13:14:57Z) - Pathway to Future Symbiotic Creativity [76.20798455931603]
そこで本研究では, 5クラス階層の創造システムを分類し, 擬人アーティストから機械アーティストへの創造の道筋を示す。
芸術創造においては、機械は欲求、感謝、感情を含む人間の精神状態を理解する必要があるが、機械の創造的能力と限界も理解する必要がある。
我々は、人間互換のAIシステムが「ループ内人間」の原理に基づいているべきだという哲学を取り入れた、未来のマシンアーティストを構築するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-18T15:12:02Z) - Art Creation with Multi-Conditional StyleGANs [81.72047414190482]
人間のアーティストは、独特のスキル、理解、そして深い感情や感情を引き起こすアートワークを作る真の意図の組み合わせが必要です。
本研究では,多条件生成支援ネットワーク(GAN)アプローチを導入し,人間の芸術を模倣する現実的な絵画を合成する。
論文 参考訳(メタデータ) (2022-02-23T20:45:41Z) - Quantifying Confounding Bias in Generative Art: A Case Study [3.198144010381572]
本研究では,美術作品の学習スタイルにおける芸術運動の影響のモデル化が欠如していることから,難解なバイアスを定量化するための簡易な指標を提案する。
提案手法は,芸術作品における芸術運動の影響を理解する上で,最先端の外れ値検出法よりも有効である。
論文 参考訳(メタデータ) (2021-02-23T21:59:30Z) - Understanding and Creating Art with AI: Review and Outlook [12.614901374282868]
人工知能(AI)に関連する技術は、視覚芸術における研究と創造的実践の変化に強い影響を与える。
本稿では,AIとアートの2つの側面を総合的にレビューする:1)AIはアート分析に使用され,デジタル化されたアートコレクションに使用される;2)AIは創造的な目的に使用され,新しいアート作品を生成する。
アートの創造におけるAIの役割に関して、AIアートの様々な実践的・理論的側面に対処し、それらのトピックを詳細に扱った関連作品を統合します。
論文 参考訳(メタデータ) (2021-02-18T01:38:11Z) - Biases in Generative Art -- A Causal Look from the Lens of Art History [3.198144010381572]
本稿では,アルゴリズム設計に関連する問題に対する不適切な問題定式化によって生じるAIパイプラインのバイアスについて検討する。
アート作成の過程をモデル化する上で,現在の手法が不足している点を強調し,様々なバイアスに寄与する。
論文 参考訳(メタデータ) (2020-10-26T00:49:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。