論文の概要: Black-Box Access is Insufficient for Rigorous AI Audits
- arxiv url: http://arxiv.org/abs/2401.14446v3
- Date: Wed, 29 May 2024 13:56:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 23:40:54.828526
- Title: Black-Box Access is Insufficient for Rigorous AI Audits
- Title(参考訳): 厳格なAI監査にはブラックボックスアクセスが不十分
- Authors: Stephen Casper, Carson Ezell, Charlotte Siegmann, Noam Kolt, Taylor Lynn Curtis, Benjamin Bucknall, Andreas Haupt, Kevin Wei, Jérémy Scheurer, Marius Hobbhahn, Lee Sharkey, Satyapriya Krishna, Marvin Von Hagen, Silas Alberti, Alan Chan, Qinyi Sun, Michael Gerovitch, David Bau, Max Tegmark, David Krueger, Dylan Hadfield-Menell,
- Abstract要約: ブラックボックス監査の限界と、ホワイトボックスとアウトサイドボックス監査の利点について論じる。
また、これらの監査を最小限のセキュリティリスクで実施するための技術的、物理的、法的保護についても論じる。
- 参考スコア(独自算出の注目度): 25.983796391987298
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: External audits of AI systems are increasingly recognized as a key mechanism for AI governance. The effectiveness of an audit, however, depends on the degree of access granted to auditors. Recent audits of state-of-the-art AI systems have primarily relied on black-box access, in which auditors can only query the system and observe its outputs. However, white-box access to the system's inner workings (e.g., weights, activations, gradients) allows an auditor to perform stronger attacks, more thoroughly interpret models, and conduct fine-tuning. Meanwhile, outside-the-box access to training and deployment information (e.g., methodology, code, documentation, data, deployment details, findings from internal evaluations) allows auditors to scrutinize the development process and design more targeted evaluations. In this paper, we examine the limitations of black-box audits and the advantages of white- and outside-the-box audits. We also discuss technical, physical, and legal safeguards for performing these audits with minimal security risks. Given that different forms of access can lead to very different levels of evaluation, we conclude that (1) transparency regarding the access and methods used by auditors is necessary to properly interpret audit results, and (2) white- and outside-the-box access allow for substantially more scrutiny than black-box access alone.
- Abstract(参考訳): AIシステムの外部監査は、AIガバナンスの重要なメカニズムとして、ますます認識されている。
しかし、監査の有効性は監査人に与えられるアクセスの程度に依存する。
最近の最先端のAIシステムの監査は、主にブラックボックスアクセスに依存しており、監査官はシステムに問い合わせて出力を観察することしかできない。
しかしながら、システムの内部動作(例えば重量、アクティベーション、勾配)へのホワイトボックスアクセスは、監査人がより強力な攻撃を行い、モデルをより徹底的に解釈し、微調整を行うことを可能にする。
一方、トレーニングやデプロイメント情報(方法論、コード、ドキュメンテーション、データ、デプロイメントの詳細、内部評価からの発見など)への外部アクセスは、監査人が開発プロセスを精査し、より対象とする評価を設計できるようにします。
本稿では,ブラックボックス監査の限界と,ホワイトボックス監査とアウトサイドボックス監査の利点について検討する。
また、これらの監査を最小限のセキュリティリスクで実施するための技術的、物理的、法的保護についても論じる。
その結果,(1)監査員が使用するアクセスと手法に関する透明性は,監査結果を適切に解釈するには必要であり,(2)ブラックボックスのみよりも,ホワイトボックスとアウト・ザ・ボックスのアクセスの方がかなり精査できることがわかった。
関連論文リスト
- Auditing for Bias in Ad Delivery Using Inferred Demographic Attributes [50.37313459134418]
広告配信のブラックボックス監査において,予測誤差が偏見の監査に与える影響について検討した。
本稿では,広告配信アルゴリズムのスキュー評価において,推測誤差を軽減する手法を提案する。
論文 参考訳(メタデータ) (2024-10-30T18:57:03Z) - Assessing the Auditability of AI-integrating Systems: A Framework and Learning Analytics Case Study [0.0]
監査の有効性は,監査システムの監査可能性に左右される。
本稿では,AI統合システムの監査性を評価するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T13:43:21Z) - From Transparency to Accountability and Back: A Discussion of Access and Evidence in AI Auditing [1.196505602609637]
監査は、デプロイ前のリスクアセスメント、進行中の監視、コンプライアンステストなど、さまざまな形式で実施することができる。
AI監査には、その実装を複雑にする多くの運用上の課題がある。
我々は、監査は自然な仮説テストとして、並列仮説テストと法的手続きを引き出すことができると論じ、このフレーミングは、監査実施に関する明確かつ解釈可能なガイダンスを提供すると論じる。
論文 参考訳(メタデータ) (2024-10-07T06:15:46Z) - A Game-Theoretic Analysis of Auditing Differentially Private Algorithms with Epistemically Disparate Herd [16.10098472773814]
本研究は,Stackelbergゲームアプローチを用いたアルゴリズム開発者に対する群集監査の効果について検討する。
透明性と説明責任を高めることで、Hed auditはプライバシ保護アルゴリズムの責任ある開発に寄与する。
論文 参考訳(メタデータ) (2024-04-24T20:34:27Z) - The Decisive Power of Indecision: Low-Variance Risk-Limiting Audits and Election Contestation via Marginal Mark Recording [51.82772358241505]
リスクリミット監査(リスクリミット監査、RLA)は、大規模な選挙の結果を検証する技術である。
我々は、効率を改善し、統計力の進歩を提供する監査の新たなファミリーを定めている。
新しい監査は、複数の可能なマーク解釈を宣言できるように、キャストボイトレコードの標準概念を再考することで実現される。
論文 参考訳(メタデータ) (2024-02-09T16:23:54Z) - A Framework for Assurance Audits of Algorithmic Systems [2.2342503377379725]
本稿では,運用可能なコンプライアンスおよび保証外部監査フレームワークとして,基準監査を提案する。
AI監査も同様に、AI組織が人間の価値を害し、維持する方法でアルゴリズムを管理する能力について、ステークホルダーに保証を提供するべきだ、と私たちは主張する。
我々は、より成熟した金融監査産業の実践をAI監査に適用する上でのメリット、固有の制限、実装上の課題について、批判的な議論をすることで締めくくります。
論文 参考訳(メタデータ) (2024-01-26T14:38:54Z) - Who Audits the Auditors? Recommendations from a field scan of the
algorithmic auditing ecosystem [0.971392598996499]
AI監査エコシステムの最初の包括的なフィールドスキャンを提供する。
私たちは、新たなベストプラクティスと、一般的になりつつある方法やツールを特定します。
これらの監査の質と影響を改善するための政策勧告を概説する。
論文 参考訳(メタデータ) (2023-10-04T01:40:03Z) - Tight Auditing of Differentially Private Machine Learning [77.38590306275877]
プライベート機械学習では、既存の監査メカニズムは厳格である。
彼らは不確実な最悪の仮定の下でのみ厳密な見積もりを行う。
我々は、自然(逆向きではない)データセットの厳密なプライバシー推定を得られる改善された監査スキームを設計する。
論文 参考訳(メタデータ) (2023-02-15T21:40:33Z) - FAT Forensics: A Python Toolbox for Implementing and Deploying Fairness,
Accountability and Transparency Algorithms in Predictive Systems [69.24490096929709]
FAT ForensicsというオープンソースのPythonパッケージを開発しました。
予測アルゴリズムの重要な公平性、説明可能性、透明性を検査することができる。
私たちのツールボックスは、予測パイプラインのすべての要素を評価することができます。
論文 参考訳(メタデータ) (2022-09-08T13:25:02Z) - Having your Privacy Cake and Eating it Too: Platform-supported Auditing
of Social Media Algorithms for Public Interest [70.02478301291264]
ソーシャルメディアプラットフォームは、情報や機会へのアクセスをキュレートするので、公衆の言論を形成する上で重要な役割を果たす。
これまでの研究では、これらのアルゴリズムが偏見や差別的な結果をもたらすことを示すためにブラックボックス法が用いられてきた。
本稿では,提案法の目標を満たすプラットフォーム支援型監査手法を提案する。
論文 参考訳(メタデータ) (2022-07-18T17:32:35Z) - Algorithmic Fairness and Vertical Equity: Income Fairness with IRS Tax
Audit Models [73.24381010980606]
本研究は、IRSによる税務監査選択を通知するシステムの文脈におけるアルゴリズムフェアネスの問題について検討する。
監査を選択するための柔軟な機械学習手法が、垂直エクイティにどのように影響するかを示す。
この結果は,公共セクター全体でのアルゴリズムツールの設計に影響を及ぼす。
論文 参考訳(メタデータ) (2022-06-20T16:27:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。