論文の概要: Enhancing LLM Evaluations: The Garbling Trick
- arxiv url: http://arxiv.org/abs/2411.01533v2
- Date: Tue, 05 Nov 2024 03:17:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:02:09.038965
- Title: Enhancing LLM Evaluations: The Garbling Trick
- Title(参考訳): LLM評価の強化 - ギャリングトリック
- Authors: William F. Bradley,
- Abstract要約: 大規模言語モデル(LLM)はますます強力になり、パフォーマンスに基づいたモデルの区別が困難になる。
本稿では,既存のLCM評価を,段階的に困難なタスクに変換する一般的な手法を提案する。
結果から,これらのモデルの比較推論能力,特に OpenAI の o1-preview と Google の gemini-pro-1.5 の区別が明らかになった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: As large language models (LLMs) become increasingly powerful, traditional evaluation metrics tend to saturate, making it challenging to distinguish between models based on their performance. We propose a general method to transform existing LLM evaluations into a series of progressively more difficult tasks. These enhanced evaluations emphasize reasoning capabilities and can reveal relative performance differences that are not apparent in the original assessments. To demonstrate the effectiveness of our approach, we create a new multiple-choice test corpus, extend it into a family of evaluations, and assess a collection of LLMs. Our results offer insights into the comparative reasoning abilities of these models, particularly highlighting distinctions between OpenAI's o1-preview and Google's gemini-pro-1.5-002.
- Abstract(参考訳): 大規模言語モデル(LLM)がますます強力になるにつれて、従来の評価指標は飽和する傾向にあり、そのパフォーマンスに基づいたモデルの区別が困難になる。
本稿では,既存のLCM評価を,段階的に困難なタスクに変換する一般的な手法を提案する。
これらの強化された評価は推論能力を強調し、元の評価では明らかでない相対的な性能差を明らかにすることができる。
提案手法の有効性を示すため, 複数選択型テストコーパスを作成し, 評価ファミリに拡張し, LCMのコレクションを評価する。
我々の結果は、これらのモデルの比較推論能力に関する洞察を与え、特にOpenAIのo1-previewとGoogleのgemini-pro-1.5-002の区別を強調します。
関連論文リスト
- MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
MLLM(Multimodal Large Language Models)は、産業と学術の両方から注目を集めている。
開発プロセスでは、モデルの改善に関する直感的なフィードバックとガイダンスを提供するため、評価が重要である。
この研究は、研究者に異なるニーズに応じてMLLMを効果的に評価する方法を簡単に把握し、より良い評価方法を促すことを目的としている。
論文 参考訳(メタデータ) (2024-11-22T18:59:54Z) - Diverging Preferences: When do Annotators Disagree and do Models Know? [92.24651142187989]
我々は,4つのハイレベルクラスにまたがる10のカテゴリにまたがる相違点の分類法を開発した。
意見の相違の大部分は、標準的な報酬モデリングアプローチに反対している。
本研究は,選好の変化を識別し,評価とトレーニングへの影響を緩和する手法を開発する。
論文 参考訳(メタデータ) (2024-10-18T17:32:22Z) - The Good, The Bad, and The Greedy: Evaluation of LLMs Should Not Ignore Non-Determinism [39.392450788666814]
大規模言語モデル(LLM)の現在の評価は、しばしば非決定論を見落としている。
greedyデコーディングは一般的に、最も評価されたタスクのサンプリング方法よりも優れています。
より小型のLPMはGPT-4-Turboのような大型のモデルと一致するか、超えることができる。
論文 参考訳(メタデータ) (2024-07-15T06:12:17Z) - Decompose and Aggregate: A Step-by-Step Interpretable Evaluation Framework [75.81096662788254]
大規模言語モデル(LLM)はスケーラブルで経済的な評価指標である。
これらの評価者がどの程度信頼できるかという問題は、重要な研究課題として浮上している。
本稿では,デコンプリートとアグリゲートを提案し,その評価プロセスを教育実践に基づいて異なる段階に分解する。
論文 参考訳(メタデータ) (2024-05-24T08:12:30Z) - Large Language Models are Inconsistent and Biased Evaluators [2.136983452580014]
我々は,Large Language Models (LLMs) が親しみの偏りを示し,評価の歪んだ分布を示すため,評価値の偏りを示すことを示した。
また, LLM は不整合性評価器であり, テキスト品質の人間の理解に欠かせない相違を誘発する「サンプル間合意」が低く, 感度が高いことがわかった。
論文 参考訳(メタデータ) (2024-05-02T20:42:28Z) - PRE: A Peer Review Based Large Language Model Evaluator [14.585292530642603]
既存のパラダイムは、LLMの性能を評価するために、人間アノテーションまたはモデルベースの評価器のいずれかに依存している。
ピアレビュープロセスを通じてLLMを自動的に評価できる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-28T12:33:14Z) - F-Eval: Assessing Fundamental Abilities with Refined Evaluation Methods [102.98899881389211]
F-Evalは、表現、常識、論理などの基本能力を評価するためのバイリンガル評価ベンチマークである。
参照不要な主観的タスクに対しては,APIモデルによるスコアの代替として,新たな評価手法を考案する。
論文 参考訳(メタデータ) (2024-01-26T13:55:32Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
大規模言語モデル(LLM)は人工知能のフロンティアを大幅に進歩させ、モデルキャパシティを著しく向上させた。
モデル性能を評価するために, LLMの能力レベルを測定するための評価ベンチマークを構築するのが典型的な方法である。
評価ベンチマークを用いて不適切なリスクと影響について検討し,評価結果を誤って解釈する。
論文 参考訳(メタデータ) (2023-11-03T14:59:54Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
我々は,命令追従出力の識別におけるLLM評価器の能力をテストするために,挑戦的なメタ評価ベンチマーク LLMBar を導入する。
異なる評価器がLLMBarに対して異なる性能を示し、最高の評価器でさえ改善の余地があることが判明した。
論文 参考訳(メタデータ) (2023-10-11T16:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。