Applications of artificial intelligence in the analysis of histopathology images of gliomas: a review
- URL: http://arxiv.org/abs/2401.15022v4
- Date: Fri, 12 Jul 2024 10:16:55 GMT
- Title: Applications of artificial intelligence in the analysis of histopathology images of gliomas: a review
- Authors: Jan-Philipp Redlich, Friedrich Feuerhake, Joachim Weis, Nadine S. Schaadt, Sarah Teuber-Hanselmann, Christoph Buck, Sabine Luttmann, Andrea Eberle, Stefan Nikolin, Arno Appenzeller, Andreas Portmann, André Homeyer,
- Abstract summary: This review examines 83 publicly available research studies that have proposed AI-based methods for whole-slide histopathology images of human gliomas.
The focus of current research is the assessment of hematoxylin and eosin-stained tissue sections of adult-type diffuse gliomas.
So far, AI-based methods have achieved promising results, but are not yet used in real clinical settings.
- Score: 0.33999813472511115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the diagnosis of gliomas has become increasingly complex. Analysis of glioma histopathology images using artificial intelligence (AI) offers new opportunities to support diagnosis and outcome prediction. To give an overview of the current state of research, this review examines 83 publicly available research studies that have proposed AI-based methods for whole-slide histopathology images of human gliomas, covering the diagnostic tasks of subtyping (23/83), grading (27/83), molecular marker prediction (20/83), and survival prediction (29/83). All studies were reviewed with regard to methodological aspects as well as clinical applicability. It was found that the focus of current research is the assessment of hematoxylin and eosin-stained tissue sections of adult-type diffuse gliomas. The majority of studies (52/83) are based on the publicly available glioblastoma and low-grade glioma datasets from The Cancer Genome Atlas (TCGA) and only a few studies employed other datasets in isolation (16/83) or in addition to the TCGA datasets (15/83). Current approaches mostly rely on convolutional neural networks (63/83) for analyzing tissue at 20x magnification (35/83). A new field of research is the integration of clinical data, omics data, or magnetic resonance imaging (29/83). So far, AI-based methods have achieved promising results, but are not yet used in real clinical settings. Future work should focus on the independent validation of methods on larger, multi-site datasets with high-quality and up-to-date clinical and molecular pathology annotations to demonstrate routine applicability.
Related papers
- Prognosis of COVID-19 using Artificial Intelligence: A Systematic Review and Meta-analysis [0.23221087157793407]
This study identifies, appraises and synthesizes published studies on the use of AI for the prognosis of COVID-19.
Several AI models and architectures were employed, such as the Siamense model, support vector machine, Random Forest, eXtreme Gradient Boosting, and convolutional neural networks.
The models achieved 71%, 88% and 67% sensitivity for mortality, severity assessment and need for ventilation, respectively.
arXiv Detail & Related papers (2024-08-01T00:33:32Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Multiple Instance Learning for Glioma Diagnosis using Hematoxylin and
Eosin Whole Slide Images: An Indian Cohort Study [31.789472128764036]
This study advances patient care with findings from rigorous multiple instance learning experimentations.
It establishes new performance benchmarks in glioma subtype classification across multiple datasets.
arXiv Detail & Related papers (2024-02-24T14:59:19Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Ovarian Cancer Data Analysis using Deep Learning: A Systematic Review
from the Perspectives of Key Features of Data Analysis and AI Assurance [0.0]
Machine or Deep Learning (ML/DL)-based autonomous data analysis tools can assist clinicians and cancer researchers in discovering patterns and relationships from complex data sets.
Many DL-based analyses on ovarian cancer (OC) data have recently been published.
However, a comprehensive understanding of these analyses in terms of these features and AI assurance (AIA) is currently lacking.
arXiv Detail & Related papers (2023-11-20T17:17:29Z) - Artificial Intelligence in Ovarian Cancer Histopathology: A Systematic
Review [1.832300121391956]
Methods: A search of PubMed, Scopus, Web of Science, CENTRAL, and WHO-ICTRP was conducted.
Risk of bias was assessed using PROBAST.
There were 80 models of interest, including 37 diagnostic models, 22 prognostic models, and 21 models with other diagnostically relevant outcomes.
All models were found to be at high or unclear risk of bias overall, with most research having a high risk of bias in the analysis.
arXiv Detail & Related papers (2023-03-31T12:26:29Z) - Artificial-intelligence-based molecular classification of diffuse
gliomas using rapid, label-free optical imaging [59.79875531898648]
DeepGlioma is an artificial-intelligence-based diagnostic screening system.
DeepGlioma can predict the molecular alterations used by the World Health Organization to define the adult-type diffuse glioma taxonomy.
arXiv Detail & Related papers (2023-03-23T18:50:18Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
We present findings from the largest Federated ML study to-date, involving data from 71 healthcare institutions across 6 continents.
We generate an automatic tumor boundary detector for the rare disease of glioblastoma.
We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent.
arXiv Detail & Related papers (2022-04-22T17:27:00Z) - Feature Fusion of Raman Chemical Imaging and Digital Histopathology
using Machine Learning for Prostate Cancer Detection [0.0]
This study uses multimodal images formed from stained Digital Histopathology (DP) and unstained Raman Chemical Imaging (RCI)
The hypothesis tested was whether multimodal image models can outperform single modality baseline models in terms of diagnostic accuracy.
arXiv Detail & Related papers (2021-01-18T22:11:42Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
Early detection of head and neck tumors is crucial for patient survival.
Hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors.
We present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI.
arXiv Detail & Related papers (2020-04-21T17:07:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.