論文の概要: Accelerating Material Property Prediction using Generically Complete Isometry Invariants
- arxiv url: http://arxiv.org/abs/2401.15089v2
- Date: Tue, 7 May 2024 13:05:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 19:34:38.723416
- Title: Accelerating Material Property Prediction using Generically Complete Isometry Invariants
- Title(参考訳): 遺伝的完全等距離不変量を用いた材料特性予測の高速化
- Authors: Jonathan Balasingham, Viktor Zamaraev, Vitaliy Kurlin,
- Abstract要約: 我々は、学習アルゴリズムの表現として、ポイントワイド距離分布(PDD)を適用した。
本研究では,空間符号化手法を用いてPDDと合成情報を組み合わせた自己認識機構を改良したトランスフォーマーモデルを開発した。
このモデルは、Material ProjectとJarvis-DFTデータベースの結晶上でテストされ、最先端の手法に匹敵する精度を示す。
- 参考スコア(独自算出の注目度): 3.031375888004876
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Periodic material or crystal property prediction using machine learning has grown popular in recent years as it provides a computationally efficient replacement for classical simulation methods. A crucial first step for any of these algorithms is the representation used for a periodic crystal. While similar objects like molecules and proteins have a finite number of atoms and their representation can be built based upon a finite point cloud interpretation, periodic crystals are unbounded in size, making their representation more challenging. In the present work, we adapt the Pointwise Distance Distribution (PDD), a continuous and generically complete isometry invariant for periodic point sets, as a representation for our learning algorithm. The PDD distinguished all (more than 660 thousand) periodic crystals in the Cambridge Structural Database as purely periodic sets of points without atomic types. We develop a transformer model with a modified self-attention mechanism that combines PDD with compositional information via a spatial encoding method. This model is tested on the crystals of the Materials Project and Jarvis-DFT databases and shown to produce accuracy on par with state-of-the-art methods while being several times faster in both training and prediction time.
- Abstract(参考訳): 近年,機械学習を用いた周期的材料や結晶特性の予測が盛んになり,従来のシミュレーション手法に代わる計算効率が向上している。
これらのアルゴリズムにとって重要な第一歩は、周期結晶の表現である。
分子やタンパク質のような類似の物体は有限個の原子を持ち、それらの表現は有限点の雲の解釈に基づいて構築することができるが、周期結晶は大きさが無制限であるため、その表現はより困難である。
本研究では,学習アルゴリズムの表現として,周期的な点集合に対して連続的かつ総称的に完全アイソメトリ不変の点距離分布 (PDD) を適用する。
PDDはケンブリッジ構造データベースの全ての(660万以上の)周期結晶を、原子型を持たない純粋に周期的な点集合として区別した。
本研究では,空間符号化手法を用いてPDDと合成情報を組み合わせた自己認識機構を改良したトランスフォーマーモデルを開発した。
このモデルは、Material ProjectとJarvis-DFTデータベースの結晶上でテストされ、トレーニング時間と予測時間の両方で数倍高速でありながら、最先端の手法と同等の精度が得られることを示した。
関連論文リスト
- PDDFormer: Pairwise Distance Distribution Graph Transformer for Crystal Material Property Prediction [8.36720478795747]
本稿では,原子重み付きペアワイド距離分布 (WPDD) とユニットセルペアワイド距離分布 (UPDD) を初めて提案し,これをマルチエッジ結晶グラフの構築に取り入れた。
本手法は原子位置のわずかな摂動の下でも結晶グラフの連続性と完全性を維持することを実証する。
論文 参考訳(メタデータ) (2024-08-23T11:05:48Z) - Complete and Efficient Graph Transformers for Crystal Material Property Prediction [53.32754046881189]
結晶構造は、3次元空間の正則格子に沿って繰り返される原始単位セル内の原子塩基によって特徴づけられる。
本稿では,各原子の格子に基づく表現を確立するために,単位細胞の周期パターンを利用する新しい手法を提案する。
結晶材料に特化して設計されたSE(3)トランスであるComFormerを提案する。
論文 参考訳(メタデータ) (2024-03-18T15:06:37Z) - Crystalformer: Infinitely Connected Attention for Periodic Structure Encoding [10.170537065646323]
結晶構造から材料の物性を予測することは、材料科学の基本的な問題である。
結晶構造が無限に繰り返し、原子の周期的な配列であり、完全に連結された注意が無限に連結された注意をもたらすことを示す。
本稿では, 結晶構造に対する簡単なトランスフォーマーベースエンコーダアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-03-18T11:37:42Z) - PerCNet: Periodic Complete Representation for Crystal Graphs [3.7050297294650716]
合理的な結晶表現法は、局所的および大域的な情報をキャプチャするべきである。
無限拡張結晶材料に対する周期的完全表現と計算アルゴリズムを提案する。
提案した表現に基づいて,結晶材料特性を予測するネットワークPerCNetを提案する。
論文 参考訳(メタデータ) (2023-12-03T08:55:35Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
計算化学において、結晶構造予測は最適化問題である。
この問題に対処する1つのアプローチは、密度汎関数理論(DFT)に基づいてシミュレータを構築し、続いてシミュレーションで探索を実行することである。
我々は,LCOM(最近の保守的客観モデル)と呼ばれる我々の手法が,構造予測の成功率の観点から,最も優れたアプローチと同等に機能することを示す。
論文 参考訳(メタデータ) (2023-10-16T04:35:44Z) - Periodic Graph Transformers for Crystal Material Property Prediction [39.01618096831294]
結晶をコードする周期グラフの表現学習について検討する。
正則グラフと異なり、周期グラフは3次元空間の正則格子上を繰り返す最小単位セルからなる。
本研究では,周期グラフ表現学習のための変換器アーキテクチャであるMatformerを提案する。
論文 参考訳(メタデータ) (2022-09-23T18:57:22Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Geometric Transformer for End-to-End Molecule Properties Prediction [92.28929858529679]
分子特性予測のためのトランスフォーマーに基づくアーキテクチャを導入し,分子の形状を捉える。
分子幾何学の初期符号化による古典的な位置エンコーダと、学習されたゲート自己保持機構を改変する。
論文 参考訳(メタデータ) (2021-10-26T14:14:40Z) - SPANet: Generalized Permutationless Set Assignment for Particle Physics
using Symmetry Preserving Attention [62.43586180025247]
大型ハドロン衝突型加速器の衝突は、観測された粒子の可変サイズの集合を生成する。
崩壊生成物の物理対称性は、観測された粒子の崩壊生成物の割り当てを複雑にする。
本稿では,対称性を保った注目ネットワークを構築するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-06-07T18:18:20Z) - Optimal radial basis for density-based atomic representations [58.720142291102135]
データセットの構造的多様性を最も効率的に表現するために選択される適応的で最適な数値ベースを構築する方法について議論します。
トレーニングデータセットごとに、この最適なベースはユニークで、プリミティブベースに関して追加のコストなしで計算することができる。
この構成が精度と計算効率のよい表現をもたらすことを実証する。
論文 参考訳(メタデータ) (2021-05-18T17:57:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。