Sensor-Based Data Acquisition via Ubiquitous Device to Detect Muscle
Strength Training Activities
- URL: http://arxiv.org/abs/2401.15124v1
- Date: Fri, 26 Jan 2024 10:44:44 GMT
- Title: Sensor-Based Data Acquisition via Ubiquitous Device to Detect Muscle
Strength Training Activities
- Authors: E. Wianto, H. Toba, M. Malinda and Chien-Hsu Chen
- Abstract summary: This research utilizes embedded sensors for Human Activity Recognition (HAR)
Based on 25 participants data, this study has successfully identified important sensor attributes that play important roles in the right and left hands for muscle strength motions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Maintaining a high quality of life through physical activities (PA) to
prevent health decline is crucial. However, the relationship between
individuals health status, PA preferences, and motion factors is complex. PA
discussions consistently show a positive correlation with healthy aging
experiences, but no explicit relation to specific types of musculoskeletal
exercises. Taking advantage of the increasingly widespread existence of
smartphones, especially in Indonesia, this research utilizes embedded sensors
for Human Activity Recognition (HAR). Based on 25 participants data, performing
nine types of selected motion, this study has successfully identified important
sensor attributes that play important roles in the right and left hands for
muscle strength motions as the basis for developing machine learning models
with the LSTM algorithm.
Related papers
- Scaling Wearable Foundation Models [54.93979158708164]
We investigate the scaling properties of sensor foundation models across compute, data, and model size.
Using a dataset of up to 40 million hours of in-situ heart rate, heart rate variability, electrodermal activity, accelerometer, skin temperature, and altimeter per-minute data from over 165,000 people, we create LSM.
Our results establish the scaling laws of LSM for tasks such as imputation, extrapolation, both across time and sensor modalities.
arXiv Detail & Related papers (2024-10-17T15:08:21Z) - A Graph-based Approach to Human Activity Recognition [5.323279718522213]
This paper presents a methodology to efficiently extract substantial insights from expanding real-time datasets.
By utilizing data from Inertial Measurement Units (IMU) and Global Navigation Satellite Systems (GNSS) receivers, athletic performance can be analyzed using directed graphs.
Our approach is demonstrated on biathlon data and detects specific points of interest and complex movement sequences.
arXiv Detail & Related papers (2024-08-19T17:51:00Z) - The Role of Functional Muscle Networks in Improving Hand Gesture Perception for Human-Machine Interfaces [2.367412330421982]
Surface electromyography (sEMG) has been explored for its rich informational context and accessibility.
This paper proposes the decoding of muscle synchronization rather than individual muscle activation.
It achieves an accuracy of 85.1%, demonstrating improved performance compared to existing methods.
arXiv Detail & Related papers (2024-08-05T15:17:34Z) - Analyzing Participants' Engagement during Online Meetings Using Unsupervised Remote Photoplethysmography with Behavioral Features [50.82725748981231]
Engagement measurement finds application in healthcare, education, services.
Use of physiological and behavioral features is viable, but impracticality of traditional physiological measurement arises due to the need for contact sensors.
We demonstrate the feasibility of the unsupervised photoplethysmography (rmography) as an alternative for contact sensors.
arXiv Detail & Related papers (2024-04-05T20:39:16Z) - A Real-time Human Pose Estimation Approach for Optimal Sensor Placement
in Sensor-based Human Activity Recognition [63.26015736148707]
This paper introduces a novel methodology to resolve the issue of optimal sensor placement for Human Activity Recognition.
The derived skeleton data provides a unique strategy for identifying the optimal sensor location.
Our findings indicate that the vision-based method for sensor placement offers comparable results to the conventional deep learning approach.
arXiv Detail & Related papers (2023-07-06T10:38:14Z) - Multi-Channel Time-Series Person and Soft-Biometric Identification [65.83256210066787]
This work investigates person and soft-biometrics identification from recordings of humans performing different activities using deep architectures.
We evaluate the method on four datasets of multi-channel time-series human activity recognition (HAR)
Soft-biometric based attribute representation shows promising results and emphasis the necessity of larger datasets.
arXiv Detail & Related papers (2023-04-04T07:24:51Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
This contribution statistically curates the training data to assess to what degree the physical characteristics of humans influence HAR performance.
We evaluate the performance of a state-of-the-art convolutional neural network on two HAR datasets that vary in the sensors, activities, and recording for time-series HAR.
arXiv Detail & Related papers (2023-01-19T12:33:50Z) - Am I fit for this physical activity? Neural embedding of physical
conditioning from inertial sensors [0.0]
Inertial Measurement Unit (IMU) sensors are becoming increasingly ubiquitous in everyday devices such as smartphones, fitness watches, etc.
We propose a neural architecture for this task composed of convolutional and LSTM layers.
We evaluate the proposed model, dubbed PCE-LSTM, when predicting the heart rate of 23 subjects performing a variety of physical activities from IMU-sensor data available in public datasets (PAMAP2, PPG-DaLiA). PCE-LSTM yields over 10% lower mean absolute error.
arXiv Detail & Related papers (2021-03-22T18:00:27Z) - Physical Activity Recognition Based on a Parallel Approach for an
Ensemble of Machine Learning and Deep Learning Classifiers [0.0]
Human activity recognition (HAR) by wearable sensor devices embedded in the Internet of things (IOT) can play a significant role in remote health monitoring and emergency notification.
This study investigates a human activity recognition method of accrued decision accuracy and speed of execution to be applicable in healthcare.
arXiv Detail & Related papers (2021-03-02T16:50:52Z) - Learning Generalizable Physiological Representations from Large-scale
Wearable Data [12.863826659440026]
We present a novel self-supervised representation learning method using activity and heart rate (HR) signals without semantic labels.
We show that the resulting embeddings can generalize in various downstream tasks through transfer learning with linear classifiers.
Overall, we propose the first multimodal self-supervised method for behavioral and physiological data with implications for large-scale health and lifestyle monitoring.
arXiv Detail & Related papers (2020-11-09T17:56:03Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.