The Role of Functional Muscle Networks in Improving Hand Gesture Perception for Human-Machine Interfaces
- URL: http://arxiv.org/abs/2408.02547v1
- Date: Mon, 5 Aug 2024 15:17:34 GMT
- Title: The Role of Functional Muscle Networks in Improving Hand Gesture Perception for Human-Machine Interfaces
- Authors: Costanza Armanini, Tuka Alhanai, Farah E. Shamout, S. Farokh Atashzar,
- Abstract summary: Surface electromyography (sEMG) has been explored for its rich informational context and accessibility.
This paper proposes the decoding of muscle synchronization rather than individual muscle activation.
It achieves an accuracy of 85.1%, demonstrating improved performance compared to existing methods.
- Score: 2.367412330421982
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing accurate hand gesture perception models is critical for various robotic applications, enabling effective communication between humans and machines and directly impacting neurorobotics and interactive robots. Recently, surface electromyography (sEMG) has been explored for its rich informational context and accessibility when combined with advanced machine learning approaches and wearable systems. The literature presents numerous approaches to boost performance while ensuring robustness for neurorobots using sEMG, often resulting in models requiring high processing power, large datasets, and less scalable solutions. This paper addresses this challenge by proposing the decoding of muscle synchronization rather than individual muscle activation. We study coherence-based functional muscle networks as the core of our perception model, proposing that functional synchronization between muscles and the graph-based network of muscle connectivity encode contextual information about intended hand gestures. This can be decoded using shallow machine learning approaches without the need for deep temporal networks. Our technique could impact myoelectric control of neurorobots by reducing computational burdens and enhancing efficiency. The approach is benchmarked on the Ninapro database, which contains 12 EMG signals from 40 subjects performing 17 hand gestures. It achieves an accuracy of 85.1%, demonstrating improved performance compared to existing methods while requiring much less computational power. The results support the hypothesis that a coherence-based functional muscle network encodes critical information related to gesture execution, significantly enhancing hand gesture perception with potential applications for neurorobotic systems and interactive machines.
Related papers
- Human-Agent Joint Learning for Efficient Robot Manipulation Skill Acquisition [48.65867987106428]
We introduce a novel system for joint learning between human operators and robots.
It enables human operators to share control of a robot end-effector with a learned assistive agent.
It reduces the need for human adaptation while ensuring the collected data is of sufficient quality for downstream tasks.
arXiv Detail & Related papers (2024-06-29T03:37:29Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
We demonstrate memristive nano-devices based on SrTiO3 that inherently emulate all these synaptic functions.
These memristors operate in a non-filamentary, low conductance regime, which enables stable and energy efficient operation.
arXiv Detail & Related papers (2024-02-26T15:01:54Z) - Astrocyte Regulated Neuromorphic Central Pattern Generator Control of
Legged Robotic Locomotion [3.7814142008074954]
This paper introduces an astrocyte regulated Spiking Neural Network (SNN)-based CPG for learning locomotion gait through Reward-Modulated STDP for quadruped robots.
The SNN-based CPG is simulated on a multi-object physics simulation platform resulting in the emergence of a trotting gait while running the robot on flat ground.
$23.3times$ computational power savings is observed in comparison to a state-of-the-art reinforcement learning based robot control algorithm.
arXiv Detail & Related papers (2023-12-25T20:33:16Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
We present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks.
We showcase a range of simulated and fabricated robots along with their capabilities.
arXiv Detail & Related papers (2023-11-28T18:58:48Z) - Learning-based adaption of robotic friction models [48.453527255659296]
We introduce a novel approach to adapt an existing friction model to new dynamics using as little data as possible.
Our proposed estimator outperforms the conventional model-based approach and the base neural network significantly.
Our method does not rely on data with external load during training, eliminating the need for external torque sensors.
arXiv Detail & Related papers (2023-10-25T14:50:15Z) - Evaluating Spiking Neural Network On Neuromorphic Platform For Human
Activity Recognition [2.710807780228189]
Energy efficiency and low latency are crucial requirements for wearable AI-empowered human activity recognition systems.
Spike-based workouts recognition system can achieve a comparable accuracy to popular milliwatt RISC-V bases multi-core processor GAP8 with a traditional neural network.
arXiv Detail & Related papers (2023-08-01T18:59:06Z) - A Convolutional Spiking Network for Gesture Recognition in
Brain-Computer Interfaces [0.8122270502556371]
We propose a simple yet efficient machine learning-based approach for the exemplary problem of hand gesture classification based on brain signals.
We demonstrate that this approach generalizes to different subjects with both EEG and ECoG data and achieves superior accuracy in the range of 92.74-97.07%.
arXiv Detail & Related papers (2023-04-21T16:23:40Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
We propose a novel unsupervised domain adaptation framework which can simultaneously transfer multi-modality knowledge, i.e., both kinematic and visual data, from simulator to real robot.
It remedies the domain gap with enhanced transferable features by using temporal cues in videos, and inherent correlations in multi-modal towards recognizing gesture.
Results show that our approach recovers the performance with great improvement gains, up to 12.91% in ACC and 20.16% in F1score without using any annotations in real robot.
arXiv Detail & Related papers (2021-03-06T09:10:03Z) - Synthesizing Skeletal Motion and Physiological Signals as a Function of
a Virtual Human's Actions and Emotions [10.59409233835301]
We develop for the first time a system consisting of computational models for synchronously skeletal motion, electrocardiogram, blood pressure, respiration, and skin conductance signals.
The proposed framework is modular and allows the flexibility to experiment with different models.
In addition to facilitating ML research for round-the-clock monitoring at a reduced cost, the proposed framework will allow reusability of code and data.
arXiv Detail & Related papers (2021-02-08T21:56:15Z) - Human Haptic Gesture Interpretation for Robotic Systems [3.888848425698769]
Physical human-robot interactions (pHRI) are less efficient and communicative than human-human interactions.
A key reason is a lack of informative sense of touch in robotic systems.
This work presents four proposed touch gesture classes that cover the majority of the gesture characteristics identified in the literature.
arXiv Detail & Related papers (2020-12-03T14:33:57Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
We propose a novel online approach of multi-modal graph network (i.e., MRG-Net) to dynamically integrate visual and kinematics information.
The effectiveness of our method is demonstrated with state-of-the-art results on the public JIGSAWS dataset.
arXiv Detail & Related papers (2020-11-03T11:00:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.