SimFair: Physics-Guided Fairness-Aware Learning with Simulation Models
- URL: http://arxiv.org/abs/2401.15270v2
- Date: Mon, 5 Feb 2024 22:22:49 GMT
- Title: SimFair: Physics-Guided Fairness-Aware Learning with Simulation Models
- Authors: Zhihao Wang, Yiqun Xie, Zhili Li, Xiaowei Jia, Zhe Jiang, Aolin Jia,
Shuo Xu
- Abstract summary: In many cases, inequity in performance is due to the change in distribution over different regions.
We propose SimFair, a physics-guided fairness-aware learning framework.
- Score: 22.521850023693833
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fairness-awareness has emerged as an essential building block for the
responsible use of artificial intelligence in real applications. In many cases,
inequity in performance is due to the change in distribution over different
regions. While techniques have been developed to improve the transferability of
fairness, a solution to the problem is not always feasible with no samples from
the new regions, which is a bottleneck for pure data-driven attempts.
Fortunately, physics-based mechanistic models have been studied for many
problems with major social impacts. We propose SimFair, a physics-guided
fairness-aware learning framework, which bridges the data limitation by
integrating physical-rule-based simulation and inverse modeling into the
training design. Using temperature prediction as an example, we demonstrate the
effectiveness of the proposed SimFair in fairness preservation.
Related papers
- GauSim: Registering Elastic Objects into Digital World by Gaussian Simulator [55.02281855589641]
GauSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.
We leverage continuum mechanics, modeling each kernel as a continuous piece of matter to account for realistic deformations without idealized assumptions.
GauSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - PIETRA: Physics-Informed Evidential Learning for Traversing Out-of-Distribution Terrain [35.21102019590834]
Physics-Informed Evidential Traversability (PIETRA) is a self-supervised learning framework that integrates physics priors directly into the mathematical formulation of evidential neural networks.
Our evidential network seamlessly transitions between learned and physics-based predictions for out-of-distribution inputs.
PIETRA improves both learning accuracy and navigation performance in environments with significant distribution shifts.
arXiv Detail & Related papers (2024-09-04T18:01:10Z) - Efficient Imitation Learning with Conservative World Models [54.52140201148341]
We tackle the problem of policy learning from expert demonstrations without a reward function.
We re-frame imitation learning as a fine-tuning problem, rather than a pure reinforcement learning one.
arXiv Detail & Related papers (2024-05-21T20:53:18Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
We present SIM-FSVGD for learning robot dynamics from data.
We use low-fidelity physical priors to regularize the training of neural network models.
We demonstrate the effectiveness of SIM-FSVGD in bridging the sim-to-real gap on a high-performance RC racecar system.
arXiv Detail & Related papers (2024-03-25T11:29:32Z) - A Physics-embedded Deep Learning Framework for Cloth Simulation [6.8806198396336935]
This paper proposes a physics-embedded learning framework that directly encodes physical features of cloth simulation.
The framework can also integrate with other external forces and collision handling through either traditional simulators or sub neural networks.
arXiv Detail & Related papers (2024-03-19T15:21:00Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - From Model-Based to Data-Driven Simulation: Challenges and Trends in
Autonomous Driving [26.397030011439163]
We provide an overview of challenges with regard to different aspects and types of simulation.
We cover aspects around perception-, behavior- and content-realism as well as general hurdles in the domain of simulation.
Among others, we observe a trend of data-driven, generative approaches and high-fidelity data synthesis to increasingly replace model-based simulation.
arXiv Detail & Related papers (2023-05-23T11:39:23Z) - DiffCloud: Real-to-Sim from Point Clouds with Differentiable Simulation
and Rendering of Deformable Objects [18.266002992029716]
Research in manipulation of deformable objects is typically conducted on a limited range of scenarios.
Realistic simulators with support for various types of deformations and interactions have the potential to speed up experimentation.
For highly deformable objects it is challenging to align the output of a simulator with the behavior of real objects.
arXiv Detail & Related papers (2022-04-07T00:45:26Z) - Automated Dissipation Control for Turbulence Simulation with Shell
Models [1.675857332621569]
The application of machine learning (ML) techniques, especially neural networks, has seen tremendous success at processing images and language.
In this work we construct a strongly simplified representation of turbulence by using the Gledzer-Ohkitani-Yamada shell model.
We propose an approach that aims to reconstruct statistical properties of turbulence such as the self-similar inertial-range scaling.
arXiv Detail & Related papers (2022-01-07T15:03:52Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.