Five ethical principles for generative AI in scientific research
- URL: http://arxiv.org/abs/2401.15284v2
- Date: Mon, 12 Feb 2024 05:11:56 GMT
- Title: Five ethical principles for generative AI in scientific research
- Authors: Zhicheng Lin
- Abstract summary: Generative artificial intelligence tools are rapidly transforming academic research and real world applications.
This paper offers an initial framework by developing analyses and mitigation strategies across five key themes.
We argue that global consensus coupled with professional training and reasonable enforcement are critical to promoting the benefits of AI while safeguarding research integrity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generative artificial intelligence tools like large language models are
rapidly transforming academic research and real world applications. However,
discussions on ethical guidelines for generative AI in science remain
fragmented, underscoring the urgent need for consensus based standards. This
paper offers an initial framework by developing analyses and mitigation
strategies across five key themes: understanding model limitations regarding
truthfulness and bias; respecting privacy, confidentiality, and copyright;
avoiding plagiarism and policy violations when incorporating model output;
ensuring applications provide overall benefit; and using AI transparently and
reproducibly. Common scenarios are outlined to demonstrate potential ethical
violations. We argue that global consensus coupled with professional training
and reasonable enforcement are critical to promoting the benefits of AI while
safeguarding research integrity.
Related papers
- Rigor in AI: Doing Rigorous AI Work Requires a Broader, Responsible AI-Informed Conception of Rigor [83.99510317617694]
We argue that a broader conception of what rigorous AI research and practice should entail is needed.<n>We aim to provide useful language and a framework for much-needed dialogue about the AI community's work.
arXiv Detail & Related papers (2025-06-17T15:44:41Z) - Bridging the Gap: Integrating Ethics and Environmental Sustainability in AI Research and Practice [57.94036023167952]
We argue that the efforts aiming to study AI's ethical ramifications should be made in tandem with those evaluating its impacts on the environment.
We propose best practices to better integrate AI ethics and sustainability in AI research and practice.
arXiv Detail & Related papers (2025-04-01T13:53:11Z) - Technology as uncharted territory: Contextual integrity and the notion of AI as new ethical ground [55.2480439325792]
I argue that efforts to promote responsible and ethical AI can inadvertently contribute to and seemingly legitimize this disregard for established contextual norms.
I question the current narrow prioritization in AI ethics of moral innovation over moral preservation.
arXiv Detail & Related papers (2024-12-06T15:36:13Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - AI Ethics: An Empirical Study on the Views of Practitioners and
Lawmakers [8.82540441326446]
Transparency, accountability, and privacy are the most critical AI ethics principles.
Lack of ethical knowledge, no legal frameworks, and lacking monitoring bodies are the most common AI ethics challenges.
arXiv Detail & Related papers (2022-06-30T17:24:29Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - From the Ground Truth Up: Doing AI Ethics from Practice to Principles [0.0]
Recent AI ethics has focused on applying abstract principles downward to practice.
This paper moves in the other direction.
Ethical insights are generated from the lived experiences of AI-designers working on tangible human problems.
arXiv Detail & Related papers (2022-01-05T15:33:33Z) - A Deployment Model to Extend Ethically Aligned AI Implementation Method
ECCOLA [5.28595286827031]
This study aims to extend ECCOLA with a deployment model to drive the adoption of ECCOLA.
The model includes simple metrics to facilitate the communication of ethical gaps or outcomes of ethical AI development.
arXiv Detail & Related papers (2021-10-12T12:22:34Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Ethics as a service: a pragmatic operationalisation of AI Ethics [1.1083289076967895]
gap exists between theory of AI ethics principles and the practical design of AI systems.
This is the question we seek to address here by exploring why principles and technical translational tools are still needed even if they are limited.
arXiv Detail & Related papers (2021-02-11T21:29:25Z) - Implementing AI Ethics in Practice: An Empirical Evaluation of the
RESOLVEDD Strategy [6.7298812735467095]
We empirically evaluate an existing method from the field of business ethics, the RESOLVEDD strategy, in the context of ethical system development.
One of our key findings is that, even though the use of the ethical method was forced upon the participants, its utilization nonetheless facilitated of ethical consideration in the projects.
arXiv Detail & Related papers (2020-04-21T17:58:53Z) - On the Morality of Artificial Intelligence [154.69452301122175]
We propose conceptual and practical principles and guidelines for Machine Learning research and deployment.
We insist on concrete actions that can be taken by practitioners to pursue a more ethical and moral practice of ML aimed at using AI for social good.
arXiv Detail & Related papers (2019-12-26T23:06:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.