論文の概要: Product Manifold Representations for Learning on Biological Pathways
- arxiv url: http://arxiv.org/abs/2401.15478v1
- Date: Sat, 27 Jan 2024 18:46:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-30 18:00:35.318391
- Title: Product Manifold Representations for Learning on Biological Pathways
- Title(参考訳): 生物経路学習のための製品マニフォールド表現
- Authors: Daniel McNeela, Frederic Sala, Anthony Gitter
- Abstract要約: 非ユークリッド混合曲率空間における埋め込み経路グラフの効果について検討する。
学習ノード埋め込みを用いて教師付きモデルを訓練し、経路グラフにおけるタンパク質とタンパク質の相互作用の欠如を予測する。
混合曲率埋め込みにより, 分散エッジ予測性能が大幅に低下し, また, 分散エッジ予測性能が向上することがわかった。
- 参考スコア(独自算出の注目度): 13.0916239254532
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning models that embed graphs in non-Euclidean spaces have shown
substantial benefits in a variety of contexts, but their application has not
been studied extensively in the biological domain, particularly with respect to
biological pathway graphs. Such graphs exhibit a variety of complex network
structures, presenting challenges to existing embedding approaches. Learning
high-quality embeddings for biological pathway graphs is important for
researchers looking to understand the underpinnings of disease and train
high-quality predictive models on these networks. In this work, we investigate
the effects of embedding pathway graphs in non-Euclidean mixed-curvature spaces
and compare against traditional Euclidean graph representation learning models.
We then train a supervised model using the learned node embeddings to predict
missing protein-protein interactions in pathway graphs. We find large
reductions in distortion and boosts on in-distribution edge prediction
performance as a result of using mixed-curvature embeddings and their
corresponding graph neural network models. However, we find that
mixed-curvature representations underperform existing baselines on
out-of-distribution edge prediction performance suggesting that these
representations may overfit to the training graph topology. We provide our
mixed-curvature product GCN code at
https://github.com/mcneela/Mixed-Curvature-GCN and our pathway analysis code at
https://github.com/mcneela/Mixed-Curvature-Pathways.
- Abstract(参考訳): 非ユークリッド空間にグラフを埋め込んだ機械学習モデルは、様々な文脈でかなりの利点を示しているが、その応用は生物学的領域、特に生物学的経路グラフに関して広く研究されていない。
このようなグラフは様々な複雑なネットワーク構造を示し、既存の埋め込みアプローチへの挑戦を示す。
生物学的経路グラフのための高品質な埋め込みの学習は、病気の根底を理解し、これらのネットワーク上で高品質な予測モデルを訓練しようとする研究者にとって重要である。
本研究では,非ユークリッド混合曲率空間における埋め込み経路グラフの効果を調べ,従来のユークリッドグラフ表現学習モデルと比較する。
次に、学習ノード埋め込みを用いて教師付きモデルを訓練し、経路グラフにおけるタンパク質とタンパク質の相互作用の欠如を予測する。
混合曲率埋め込みとそれに対応するグラフニューラルネットワークモデルを用いた結果,分布内エッジ予測性能のゆがみの低減と向上がみられた。
しかし、混合曲率表現が既存のベースラインを分散しないエッジ予測性能に過小評価していることは、これらの表現がトレーニンググラフトポロジーに過剰に適合する可能性を示唆している。
混合曲率製品GCNコードはhttps://github.com/mcneela/Mixed-Curvature-GCNで、経路解析コードはhttps://github.com/mcneela/Mixed-Curvature-Pathwaysで提供します。
関連論文リスト
- Superhypergraph Neural Networks and Plithogenic Graph Neural Networks: Theoretical Foundations [0.0]
ハイパーグラフは、エッジが複数のノードを接続できるようにすることによって伝統的なグラフを拡張し、一方スーパーハイパーグラフは、この概念をさらに複雑な関係を表すように一般化する。
確立されたフレームワークであるグラフニューラルネットワーク(GNN)が先日,ハイパーグラフニューラルネットワーク(HGNN)に拡張された。
本稿では,超HyperGraph Neural Networks(SHGNNs)とPlithogenic Graph Neural Networks(Plithogenic Graph Neural Networks)の理論的基盤を確立する。
論文 参考訳(メタデータ) (2024-12-02T06:33:02Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Generative Graph Neural Networks for Link Prediction [13.643916060589463]
欠落したリンクを推測したり、観測されたグラフに基づいて急激なリンクを検出することは、グラフデータ分析における長年の課題である。
本稿では,GraphLPと呼ばれるネットワーク再構成理論に基づく,新しい,根本的に異なるリンク予測アルゴリズムを提案する。
リンク予測に使用される識別ニューラルネットワークモデルとは異なり、GraphLPは生成可能であり、ニューラルネットワークベースのリンク予測の新しいパラダイムを提供する。
論文 参考訳(メタデータ) (2022-12-31T10:07:19Z) - RHCO: A Relation-aware Heterogeneous Graph Neural Network with
Contrastive Learning for Large-scale Graphs [26.191673964156585]
本稿では,大規模不均一グラフ表現学習のためのRelation-aware Heterogeneous Graph Neural Network with Contrastive Learning (RHCO)を提案する。
RHCOは最先端のモデルよりも優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-11-20T04:45:04Z) - A Complex Network based Graph Embedding Method for Link Prediction [0.0]
本稿では,人気相似性と地域アトラクションのパラダイムに基づく新しいグラフ埋め込み手法を提案する。
実験結果から,提案手法は最先端のグラフ埋め込みアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-09-11T14:46:38Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
グラフは、医療領域において、非ユークリッドな非ユークリッドデータをユビキタスに表現し、分析するための強力なツールである。
近年の研究では、入力データサンプル間の関係を考慮すると、下流タスクに正の正の正則化効果があることが示されている。
タンパク質分類と脳イメージングのためのニューラルネットワークアーキテクチャであるGraph-in-Graph(GiG)を提案する。
論文 参考訳(メタデータ) (2022-04-01T10:01:37Z) - Hyperbolic Graph Neural Networks: A Review of Methods and Applications [55.5502008501764]
グラフニューラルネットワークは、従来のニューラルネットワークをグラフ構造化データに一般化する。
グラフ関連学習におけるユークリッドモデルの性能は、ユークリッド幾何学の表現能力によって依然として制限されている。
近年,木のような構造を持つグラフデータ処理や,ゆるい分布の処理において,双曲空間が人気が高まっている。
論文 参考訳(メタデータ) (2022-02-28T15:08:48Z) - Anisotropic Graph Convolutional Network for Semi-supervised Learning [7.843067454030999]
グラフ畳み込みネットワークは、高精度な予測結果を達成するのに有用であることが証明された効率的なノード埋め込みを学習する。
これらのネットワークはグラフの過度な平滑化と縮小効果の問題に悩まされており、それはグラフの端に線形ラプラシア流を用いて拡散するからである。
本稿では,ノードからの情報的特徴を捉える非線形関数を導入し,過度なスムーシングを防止し,半教師付きノード分類のための異方性グラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T13:56:03Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。