The Spectre of Surveillance and Censorship in Future Internet Architectures
- URL: http://arxiv.org/abs/2401.15828v2
- Date: Wed, 29 Jan 2025 15:00:51 GMT
- Title: The Spectre of Surveillance and Censorship in Future Internet Architectures
- Authors: Michael Wrana, Diogo Barradas, N. Asokan,
- Abstract summary: Some governments perceive Internet access as a threat to their political standing and engage in widespread network surveillance and censorship.<n>We provide an in-depth analysis of the design principles of prominent FIAs in terms of their packet structure, addressing and naming schemes, and routing protocols.<n>We conclude by providing guidelines for future research into novel FIA-based privacy-enhancing technologies.
- Score: 13.706994850776573
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent initiatives known as Future Internet Architectures (FIAs) seek to redesign the Internet to improve performance, scalability, and security. However, some governments perceive Internet access as a threat to their political standing and engage in widespread network surveillance and censorship. In this paper, we provide an in-depth analysis of the design principles of prominent FIAs in terms of their packet structure, addressing and naming schemes, and routing protocols to foster discussion on how these new systems interact with censorship and surveillance apparatuses. Further, we assess the extent to which existing surveillance and censorship mechanisms can successfully target FIA users while discussing privacy enhancing technologies to counter these mechanisms. We conclude by providing guidelines for future research into novel FIA-based privacy-enhancing technologies, and recommendations to guide the evaluation of these technologies.
Related papers
- Advancing Obfuscation Strategies to Counter China's Great Firewall: A Technical and Policy Perspective [4.606106768645647]
China's Great Firewall (GFW) exemplifies one of the most extensive and technologically sophisticated internet censorship frameworks worldwide.
This paper critically examines the GFW's principal detection techniques, including Deep Packet Inspection (DPI), domain name tampering, and traffic fingerprinting.
In parallel, we evaluate emerging countermeasures that leverage obfuscation, encryption, and routing innovations to circumvent these restrictions.
arXiv Detail & Related papers (2025-03-03T19:51:50Z) - Modern DDoS Threats and Countermeasures: Insights into Emerging Attacks and Detection Strategies [49.57278643040602]
Distributed Denial of Service (DDoS) attacks persist as significant threats to online services and infrastructure.
This paper offers a comprehensive survey of emerging DDoS attacks and detection strategies over the past decade.
arXiv Detail & Related papers (2025-02-27T11:22:25Z) - CyberNFTs: Conceptualizing a decentralized and reward-driven intrusion detection system with ML [0.0]
The study employs an analytical and comparative methodology, examining the synergy between cutting-edge Web3 technologies and information security.
The proposed model incorporates blockchain concepts, cyber non-fungible token (cyberNFT) rewards, machine learning algorithms, and publish/subscribe architectures.
arXiv Detail & Related papers (2024-08-31T21:15:26Z) - I Still See You: Why Existing IoT Traffic Reshaping Fails [14.077052412195263]
Internet traffic data produced by the Internet of Things (IoT) devices are collected by Internet Service Providers (ISPs) and device manufacturers.
On-path adversaries could infer and fingerprint users' sensitive privacy information by analyzing these network traffic traces.
There's currently no systematic method to compare and evaluate the comprehensiveness of existing studies.
arXiv Detail & Related papers (2024-06-14T18:11:44Z) - A Survey on Intelligent Internet of Things: Applications, Security, Privacy, and Future Directions [8.657062539499476]
The rapid advances in the Internet of Things (IoT) have promoted a revolution in communication technology and offered various customer services.
Artificial intelligence (AI) techniques have been exploited to facilitate IoT operations and maximize their potential in modern application scenarios.
The convergence of IoT and AI has led to a new networking paradigm called Intelligent IoT (IIoT), which has the potential to significantly transform businesses and industrial domains.
arXiv Detail & Related papers (2024-06-06T07:55:30Z) - Networking Systems for Video Anomaly Detection: A Tutorial and Survey [55.28514053969056]
Video Anomaly Detection (VAD) is a fundamental research task within the Artificial Intelligence (AI) community.
In this article, we delineate the foundational assumptions, learning frameworks, and applicable scenarios of various deep learning-driven VAD routes.
We showcase our latest NSVAD research in industrial IoT and smart cities, along with an end-cloud collaborative architecture for deployable NSVAD.
arXiv Detail & Related papers (2024-05-16T02:00:44Z) - Accelerating Tactile Internet with QUIC: A Security and Privacy Perspective [3.2738809491666077]
We envision a futuristic scenario where a QUIC-enabled network uses the underlying 6G communication infrastructure to achieve the requirements for Tactile Internet.
This article reviews the existing security and privacy attacks in QUIC and their implication on users.
arXiv Detail & Related papers (2024-01-12T16:05:13Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Edge AI for Internet of Energy: Challenges and Perspectives [5.267662071764103]
The digital landscape of the Internet of Energy (IoE) is on the brink of a revolutionary transformation with the integration of edge Artificial Intelligence (AI)
This comprehensive review elucidates the promise and potential that edge AI holds for reshaping the IoE ecosystem.
arXiv Detail & Related papers (2023-11-28T15:01:56Z) - Trust-based Approaches Towards Enhancing IoT Security: A Systematic Literature Review [3.0969632359049473]
This research paper presents a systematic literature review on the Trust-based cybersecurity security approaches for IoT.
We highlighted the common trust-based mitigation techniques in existence for dealing with these threats.
Several open issues were highlighted, and future research directions presented.
arXiv Detail & Related papers (2023-11-20T12:21:35Z) - From Generative AI to Generative Internet of Things: Fundamentals,
Framework, and Outlooks [82.964958051535]
Generative Artificial Intelligence (GAI) possesses the capabilities of generating realistic data and facilitating advanced decision-making.
By integrating GAI into modern Internet of Things (IoT), Generative Internet of Things (GIoT) is emerging and holds immense potential to revolutionize various aspects of society.
arXiv Detail & Related papers (2023-10-27T02:58:11Z) - Advancing Differential Privacy: Where We Are Now and Future Directions for Real-World Deployment [100.1798289103163]
We present a detailed review of current practices and state-of-the-art methodologies in the field of differential privacy (DP)
Key points and high-level contents of the article were originated from the discussions from "Differential Privacy (DP): Challenges Towards the Next Frontier"
This article aims to provide a reference point for the algorithmic and design decisions within the realm of privacy, highlighting important challenges and potential research directions.
arXiv Detail & Related papers (2023-04-14T05:29:18Z) - Privacy and Robustness in Federated Learning: Attacks and Defenses [74.62641494122988]
We conduct the first comprehensive survey on this topic.
Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic.
arXiv Detail & Related papers (2020-12-07T12:11:45Z) - Trustworthy AI Inference Systems: An Industry Research View [58.000323504158054]
We provide an industry research view for approaching the design, deployment, and operation of trustworthy AI inference systems.
We highlight opportunities and challenges in AI systems using trusted execution environments.
We outline areas of further development that require the global collective attention of industry, academia, and government researchers.
arXiv Detail & Related papers (2020-08-10T23:05:55Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.