A Privacy-preserving key transmission protocol to distribute QRNG keys using zk-SNARKs
- URL: http://arxiv.org/abs/2401.16170v1
- Date: Mon, 29 Jan 2024 14:00:37 GMT
- Title: A Privacy-preserving key transmission protocol to distribute QRNG keys using zk-SNARKs
- Authors: David Soler, Carlos Dafonte, Manuel Fernández-Veiga, Ana Fernández Vilas, Francisco J. Nóvoa,
- Abstract summary: Quantum Random Number Generators can provide high-quality keys for cryptographic algorithms.
Existing Entropy-as-a-Service solutions require users to trust the central authority distributing the key material.
We present a novel key transmission protocol that allows users to obtain cryptographic material generated by a QRNG in such a way that the server is unable to identify which user is receiving each key.
- Score: 2.254434034390528
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: High-entropy random numbers are an essential part of cryptography, and Quantum Random Number Generators (QRNG) are an emergent technology that can provide high-quality keys for cryptographic algorithms but unfortunately are currently difficult to access. Existing Entropy-as-a-Service solutions require users to trust the central authority distributing the key material, which is not desirable in a high-privacy environment. In this paper, we present a novel key transmission protocol that allows users to obtain cryptographic material generated by a QRNG in such a way that the server is unable to identify which user is receiving each key. This is achieved with the inclusion of Zero Knowledge Succinct Non-interactive Arguments of Knowledge (zk-SNARK), a cryptographic primitive that allow users to prove knowledge of some value without needing to reveal it. The security analysis of the protocol proves that it satisfies the properties of Anonymity, Unforgeability and Confidentiality, as defined in this document. We also provide an implementation of the protocol demonstrating its functionality and performance, using NFC as the transmission channel for the QRNG key.
Related papers
- Onion Routing Key Distribution for QKDN [1.8637078358591843]
The advance of quantum computing poses a significant threat to classical cryptography.
Two main approaches have emerged: quantum cryptography and post-quantum cryptography.
We propose a secure key distribution protocol for Quantum Key Distribution Networks (QKDN)
arXiv Detail & Related papers (2025-02-10T16:47:42Z) - Secure Semantic Communication With Homomorphic Encryption [52.5344514499035]
This paper explores the feasibility of applying homomorphic encryption to SemCom.
We propose a task-oriented SemCom scheme secured through homomorphic encryption.
arXiv Detail & Related papers (2025-01-17T13:26:14Z) - Secure Composition of Quantum Key Distribution and Symmetric Key Encryption [3.6678562499684517]
Quantum key distribution (QKD) allows Alice and Bob to share a secret key over an insecure channel with proven information-theoretic security against an adversary whose strategy is bounded only by the laws of physics.
We consider the problem of using the QKD established key with a secure symmetric key-based encryption algorithm and use an approach based on hybrid encryption to provide a proof of security for the composition.
arXiv Detail & Related papers (2025-01-14T20:58:02Z) - Post-Quantum Key Agreement Protocols Based on Modified Matrix-Power Functions over Singular Random Integer Matrix Semirings [0.0]
Post-quantum cryptography is essential for securing digital communications against threats posed by quantum computers.
This paper introduces two novel post-quantum key agreement protocols that can be easily implemented on standard computers.
arXiv Detail & Related papers (2025-01-04T14:01:09Z) - Quantum digital signature based on single-qubit without a trusted third-party [45.41082277680607]
We propose a brand new quantum digital signature protocol without a trusted third party only with qubit technology to further improve the security.
We prove that the protocol has information-theoretical unforgeability. Moreover, it satisfies other important secure properties, including asymmetry, undeniability, and expandability.
arXiv Detail & Related papers (2024-10-17T09:49:29Z) - Multi-Layered Security System: Integrating Quantum Key Distribution with Classical Cryptography to Enhance Steganographic Security [0.0]
We present a novel cryptographic system that integrates Quantum Key Distribution (QKD) with classical encryption techniques.
Our approach leverages the E91 QKD protocol to generate a shared secret key between communicating parties.
This key is then hashed using the Secure Hash Algorithm (SHA) to provide a fixedlength, high-entropy key.
arXiv Detail & Related papers (2024-08-13T15:20:29Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Practical quantum multiparty signatures using quantum-key-distribution
networks [0.0]
We develop an unconditionally secure signature scheme that guarantees authenticity and transferability of arbitrary length messages in a quantum key distribution network.
We provide a comprehensive security analysis of the developed scheme, perform an optimization of the scheme parameters with respect to the secret key consumption, and demonstrate that the developed scheme is compatible with the capabilities of currently available QKD devices.
arXiv Detail & Related papers (2021-07-27T17:41:40Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
We present a framework for privacy-preserving inference of sum-product networks (SPNs)
CryptoSPN achieves highly efficient and accurate inference in the order of seconds for medium-sized SPNs.
arXiv Detail & Related papers (2020-02-03T14:49:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.