Post-Quantum Key Agreement Protocols Based on Modified Matrix-Power Functions over Singular Random Integer Matrix Semirings
- URL: http://arxiv.org/abs/2501.02292v2
- Date: Sat, 18 Jan 2025 15:00:11 GMT
- Title: Post-Quantum Key Agreement Protocols Based on Modified Matrix-Power Functions over Singular Random Integer Matrix Semirings
- Authors: Juan Pedro Hecht, Hugo Daniel Scolnik,
- Abstract summary: Post-quantum cryptography is essential for securing digital communications against threats posed by quantum computers.
This paper introduces two novel post-quantum key agreement protocols that can be easily implemented on standard computers.
- Score: 0.0
- License:
- Abstract: Post-quantum cryptography is essential for securing digital communications against threats posed by quantum computers. Re-searchers have focused on developing algorithms that can withstand attacks from both classical and quantum computers, thereby ensuring the security of data transmissions over public networks. A critical component of this security is the key agreement protocol, which allows two parties to establish a shared secret key over an insecure channel. This paper introduces two novel post-quantum key agreement protocols that can be easily implemented on standard computers using rectangular or rank-deficient matrices, exploiting the generalizations of the matrix power function, which is a generator of NP-hard problems. We provide basic concepts and proofs, pseudocodes, examples, and a discussion of complexity.
Related papers
- Onion Routing Key Distribution for QKDN [1.8637078358591843]
The advance of quantum computing poses a significant threat to classical cryptography.
Two main approaches have emerged: quantum cryptography and post-quantum cryptography.
We propose a secure key distribution protocol for Quantum Key Distribution Networks (QKDN)
arXiv Detail & Related papers (2025-02-10T16:47:42Z) - Secure Composition of Quantum Key Distribution and Symmetric Key Encryption [3.6678562499684517]
Quantum key distribution (QKD) allows Alice and Bob to share a secret key over an insecure channel with proven information-theoretic security against an adversary whose strategy is bounded only by the laws of physics.
We consider the problem of using the QKD established key with a secure symmetric key-based encryption algorithm and use an approach based on hybrid encryption to provide a proof of security for the composition.
arXiv Detail & Related papers (2025-01-14T20:58:02Z) - Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Revocable Encryption, Programs, and More: The Case of Multi-Copy Security [48.53070281993869]
We show the feasibility of revocable primitives, such as revocable encryption and revocable programs.
This suggests that the stronger notion of multi-copy security is within reach in unclonable cryptography.
arXiv Detail & Related papers (2024-10-17T02:37:40Z) - Simulations of distributed-phase-reference quantum key distribution protocols [0.1398098625978622]
Quantum key distribution protocols provide a secret key between two users with security guaranteed by the laws of quantum mechanics.
We perform simulations on the Interconnect platform to characterise the practical implementation of these devices.
We briefly describe and simulate some possible eavesdropping attempts, backflash attack, trojan-horse attack and detector-blinding attack exploiting the device imperfections.
arXiv Detail & Related papers (2024-06-13T13:19:04Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Quantum Key Distribution for Critical Infrastructures: Towards Cyber
Physical Security for Hydropower and Dams [0.4166512373146748]
Hydropower facilities are often remotely monitored or controlled from a centralized remote-control room.
Communications may use the internet to remote control a facility's control systems, or it may involve sending control commands over a network from a control room to a machine.
The content could be encrypted and decrypted using a public key to protect the communicated information.
In contrast, quantum key distribution (QKD) is not based upon a computational problem, and offers an alternative to conventional public-key cryptography.
arXiv Detail & Related papers (2023-10-19T18:59:23Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - A quantum encryption design featuring confusion, diffusion, and mode of
operation [0.0]
We propose a non-OTP quantum encryption scheme utilizing a quantum state creation process to encrypt messages.
As essentially a non-OTP quantum block cipher the method stands out against existing methods with the following features.
arXiv Detail & Related papers (2020-10-06T22:23:30Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
We propose a canonical method to derive a secure quantum network code over a multiple unicast quantum network.
Our code correctly transmits quantum states when there is no attack.
It also guarantees the secrecy of the transmitted quantum state even with the existence of an attack.
arXiv Detail & Related papers (2020-03-30T09:25:13Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.