Realizing Disentanglement in LM Latent Space via Vocabulary-Defined Semantics
- URL: http://arxiv.org/abs/2401.16184v5
- Date: Sun, 26 May 2024 13:12:35 GMT
- Title: Realizing Disentanglement in LM Latent Space via Vocabulary-Defined Semantics
- Authors: Jian Gu, Aldeida Aleti, Chunyang Chen, Hongyu Zhang,
- Abstract summary: We introduce a pioneering approach called vocabulary-defined semantics, which establishes a reference frame grounded in LM vocabulary.
We perform semantical clustering on data representations as a novel way of LM adaptation.
Our approach outperforms state-of-the-art methods of retrieval-augmented generation and parameter-efficient finetuning.
- Score: 32.178931149612644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the latent space of language models (LMs) is important for improving the performance and interpretability of LMs. Existing analyses often fail to provide insights that take advantage of the semantic properties of language models and often overlook crucial aspects of language model adaptation. In response, we introduce a pioneering approach called vocabulary-defined semantics, which establishes a reference frame grounded in LM vocabulary within the LM latent space. We propose a novel technique to compute disentangled logits and gradients in latent space, not entangled ones on vocabulary. Further, we perform semantical clustering on data representations as a novel way of LM adaptation. Through extensive experiments across diverse text understanding datasets, our approach outperforms state-of-the-art methods of retrieval-augmented generation and parameter-efficient finetuning, showcasing its effectiveness and efficiency.
Related papers
- When Does Metadata Conditioning (NOT) Work for Language Model Pre-Training? A Study with Context-Free Grammars [34.80529788630565]
latent semantics is one of the key properties that determines the performance of language models.
One convenient approach to invoke this ability is to prepend metadata at the beginning of texts in the pre-training data.
We show that training with metadata helps improve model's performance when the given context is long enough to infer latent semantics.
arXiv Detail & Related papers (2025-04-24T13:56:43Z) - Underlying Semantic Diffusion for Effective and Efficient In-Context Learning [113.4003355229632]
Underlying Semantic Diffusion (US-Diffusion) is an enhanced diffusion model that boosts underlying semantics learning, computational efficiency, and in-context learning capabilities.
We present a Feedback-Aided Learning (FAL) framework, which leverages feedback signals to guide the model in capturing semantic details.
We also propose a plug-and-play Efficient Sampling Strategy (ESS) for dense sampling at time steps with high-noise levels.
arXiv Detail & Related papers (2025-03-06T03:06:22Z) - Learning Task Representations from In-Context Learning [73.72066284711462]
Large language models (LLMs) have demonstrated remarkable proficiency in in-context learning.
We introduce an automated formulation for encoding task information in ICL prompts as a function of attention heads.
We show that our method's effectiveness stems from aligning the distribution of the last hidden state with that of an optimally performing in-context-learned model.
arXiv Detail & Related papers (2025-02-08T00:16:44Z) - PICLe: Pseudo-Annotations for In-Context Learning in Low-Resource Named Entity Detection [56.916656013563355]
In-context learning (ICL) enables Large Language Models to perform tasks using few demonstrations.
We propose PICLe, a framework for in-context learning with noisy, pseudo-annotated demonstrations.
We evaluate PICLe on five biomedical NED datasets and show that, with zero human annotation, PICLe outperforms ICL in low-resource settings.
arXiv Detail & Related papers (2024-12-16T16:09:35Z) - Likelihood as a Performance Gauge for Retrieval-Augmented Generation [78.28197013467157]
We show that likelihoods serve as an effective gauge for language model performance.
We propose two methods that use question likelihood as a gauge for selecting and constructing prompts that lead to better performance.
arXiv Detail & Related papers (2024-11-12T13:14:09Z) - Adapting Vision-Language Models to Open Classes via Test-Time Prompt Tuning [50.26965628047682]
Adapting pre-trained models to open classes is a challenging problem in machine learning.
In this paper, we consider combining the advantages of both and come up with a test-time prompt tuning approach.
Our proposed method outperforms all comparison methods on average considering both base and new classes.
arXiv Detail & Related papers (2024-08-29T12:34:01Z) - Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
We propose a simple yet effective method, Global-Local Semantic Consistent Learning (GLSCL)
GLSCL capitalizes on latent shared semantics across modalities for text-video retrieval.
Our method achieves comparable performance with SOTA as well as being nearly 220 times faster in terms of computational cost.
arXiv Detail & Related papers (2024-05-21T11:59:36Z) - DenoSent: A Denoising Objective for Self-Supervised Sentence
Representation Learning [59.4644086610381]
We propose a novel denoising objective that inherits from another perspective, i.e., the intra-sentence perspective.
By introducing both discrete and continuous noise, we generate noisy sentences and then train our model to restore them to their original form.
Our empirical evaluations demonstrate that this approach delivers competitive results on both semantic textual similarity (STS) and a wide range of transfer tasks.
arXiv Detail & Related papers (2024-01-24T17:48:45Z) - Make Prompts Adaptable: Bayesian Modeling for Vision-Language Prompt
Learning with Data-Dependent Prior [14.232144691524528]
Recent Vision-Language Pretrained models have become the backbone for many downstream tasks.
MLE training can lead the context vector to over-fit dominant image features in the training data.
This paper presents a Bayesian-based framework of prompt learning, which could alleviate the overfitting issues on few-shot learning application.
arXiv Detail & Related papers (2024-01-09T10:15:59Z) - In-Context Probing: Toward Building Robust Classifiers via Probing Large
Language Models [5.5089506884366735]
In this paper, we propose an alternative approach, which we term In-Context Probing (ICP)
Similar to in-context learning, we contextualize the representation of the input with an instruction, but instead of decoding the output prediction, we probe the contextualized representation to predict the label.
We show that ICP performs competitive or superior to finetuning and can be particularly helpful to build classifiers on top of smaller models.
arXiv Detail & Related papers (2023-05-23T15:43:04Z) - Learning Context-aware Classifier for Semantic Segmentation [88.88198210948426]
In this paper, contextual hints are exploited via learning a context-aware classifier.
Our method is model-agnostic and can be easily applied to generic segmentation models.
With only negligible additional parameters and +2% inference time, decent performance gain has been achieved on both small and large models.
arXiv Detail & Related papers (2023-03-21T07:00:35Z) - Compositional Exemplars for In-context Learning [21.961094715261133]
Large pretrained language models (LMs) have shown impressive In-Context Learning (ICL) ability.
We propose CEIL (Compositional Exemplars for In-context Learning) to model the interaction between the given input and in-context examples.
We validate CEIL on 12 classification and generation datasets from 7 distinct NLP tasks, including sentiment analysis, paraphrase detection, natural language inference, commonsense reasoning, open-domain question answering, code generation, and semantic parsing.
arXiv Detail & Related papers (2023-02-11T14:02:08Z) - Improving Few-Shot Performance of Language Models via Nearest Neighbor
Calibration [12.334422701057674]
We propose a novel nearest-neighbor calibration framework for in-context learning.
It is inspired by a phenomenon that the in-context learning paradigm produces incorrect labels when inferring training instances.
Experiments on various few-shot text classification tasks demonstrate that our method significantly improves in-context learning.
arXiv Detail & Related papers (2022-12-05T12:49:41Z) - On the Use of External Data for Spoken Named Entity Recognition [40.93448412171246]
Recent advances in self-supervised speech representations have made it feasible to consider learning models with limited labeled data.
We draw on a variety of approaches, including self-training, knowledge distillation, and transfer learning, and consider their applicability to both end-to-end models and pipeline approaches.
arXiv Detail & Related papers (2021-12-14T18:49:26Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.