論文の概要: Cross-silo Federated Learning with Record-level Personalized
Differential Privacy
- arxiv url: http://arxiv.org/abs/2401.16251v1
- Date: Mon, 29 Jan 2024 16:01:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-30 14:18:57.020551
- Title: Cross-silo Federated Learning with Record-level Personalized
Differential Privacy
- Title(参考訳): 記録レベルの個人化差分プライバシーを用いたクロスサイロフェデレーション学習
- Authors: Junxu Liu, Jian Lou, Li Xiong, Jinfei Liu, Xiaofeng Meng
- Abstract要約: フェデレートラーニングは、トレーニングプロセス中にクライアントのコントリビューションを保護することによって、クライアント側のデータのプライバシ保護を改善するための一般的なアプローチとして現れている。
既存のソリューションは通常、すべてのレコードに対して均一なプライバシ予算を仮定し、各レコードのプライバシ要件を満たすには不十分な、ワンサイズのすべてのソリューションを提供する。
本稿では,クライアントレベルサンプリングと非一様レコードレベルサンプリングの両方を併用した2段階ハイブリッドサンプリング手法を用いて,プライバシ要件を満たす新しいフレームワークrPDP-FLを提案する。
- 参考スコア(独自算出の注目度): 11.716905567797392
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning enhanced by differential privacy has emerged as a popular
approach to better safeguard the privacy of client-side data by protecting
clients' contributions during the training process. Existing solutions
typically assume a uniform privacy budget for all records and provide
one-size-fits-all solutions that may not be adequate to meet each record's
privacy requirement. In this paper, we explore the uncharted territory of
cross-silo FL with record-level personalized differential privacy. We devise a
novel framework named rPDP-FL, employing a two-stage hybrid sampling scheme
with both client-level sampling and non-uniform record-level sampling to
accommodate varying privacy requirements. A critical and non-trivial problem is
to select the ideal per-record sampling probability q given the personalized
privacy budget {\epsilon}. We introduce a versatile solution named
Simulation-CurveFitting, allowing us to uncover a significant insight into the
nonlinear correlation between q and {\epsilon} and derive an elegant
mathematical model to tackle the problem. Our evaluation demonstrates that our
solution can provide significant performance gains over the baselines that do
not consider personalized privacy preservation.
- Abstract(参考訳): 差分プライバシによって強化されたフェデレーション学習は、トレーニングプロセス中にクライアントのコントリビューションを保護することによって、クライアント側データのプライバシ保護を改善するための一般的なアプローチとして現れている。
既存のソリューションは、通常、すべてのレコードに対して統一されたプライバシー予算を仮定し、各レコードのプライバシー要件を満たすのに適さない1サイズのソリューションを提供する。
本稿では,記録レベル差分プライバシーを持つクロスサイロFLの非チャージ領域について検討する。
本稿では,クライアントレベルサンプリングと非一様レコードレベルサンプリングの両方を併用した2段階ハイブリッドサンプリング手法を用いて,プライバシ要件を満たす新しいフレームワークrPDP-FLを提案する。
決定的かつ非自明な問題は、パーソナライズされたプライバシー予算(epsilon})を考えると、記録ごとのサンプリング確率 q を選択することである。
我々は,q と {\epsilon} の非線形相関に関する重要な知見を解明し,この問題に対処するためのエレガントな数学的モデルを導出する,Simulation-CurveFitting という多目的解を導入する。
評価の結果,プライバシ保護のパーソナライズを考慮しないベースラインに対して,我々のソリューションが大きなパフォーマンス向上をもたらすことが示された。
関連論文リスト
- Federated Transfer Learning with Differential Privacy [21.50525027559563]
我々は、信頼された中央サーバを仮定することなく、各データセットに対するプライバシー保証を提供する、テキストフェデレーションによる差分プライバシーの概念を定式化する。
フェデレートされた差分プライバシは、確立されたローカルと中央の差分プライバシモデルの間の中間プライバシモデルであることを示す。
論文 参考訳(メタデータ) (2024-03-17T21:04:48Z) - Clients Collaborate: Flexible Differentially Private Federated Learning
with Guaranteed Improvement of Utility-Privacy Trade-off [34.2117116062642]
我々は、モデルユーティリティとユーザプライバシのトレードオフを打つために、厳格なプライバシ保証を備えた新しいフェデレーション学習フレームワーク、FedCEOを紹介します。
グローバルなセマンティック空間を円滑にすることで,フェデCEOが破壊されたセマンティック情報を効果的に回復できることを示す。
異なるプライバシ設定の下で、大幅なパフォーマンス改善と厳格なプライバシ保証を観察する。
論文 参考訳(メタデータ) (2024-02-10T17:39:34Z) - A Generalized Shuffle Framework for Privacy Amplification: Strengthening Privacy Guarantees and Enhancing Utility [4.7712438974100255]
パーソナライズされたプライバシパラメータで$(epsilon_i,delta_i)$-PLDP設定をシャッフルする方法を示す。
shuffled $(epsilon_i,delta_i)$-PLDP process approximately saves $mu$-Gaussian Differential Privacy with mu = sqrtfrac2sum_i=1n frac1-delta_i1+eepsilon_i-max_ifrac1-delta_i1+e
論文 参考訳(メタデータ) (2023-12-22T02:31:46Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
モデルパラメータを歪ませることでプライバシを保護する保護機構の一般学習フレームワークを提案する。
フェデレートされた学習における各コミュニケーションラウンドにおいて、各クライアント上の各モデルパラメータに対して、パーソナライズされたユーティリティプライバシトレードオフを実現することができる。
論文 参考訳(メタデータ) (2023-05-24T13:44:02Z) - On Differential Privacy and Adaptive Data Analysis with Bounded Space [76.10334958368618]
差分プライバシーと適応データ分析の2つの関連分野の空間複雑性について検討する。
差分プライバシーで効率的に解くために指数関数的に多くの空間を必要とする問題Pが存在することを示す。
アダプティブデータ分析の研究の行は、アダプティブクエリのシーケンスに応答するのに必要なサンプルの数を理解することに焦点を当てている。
論文 参考訳(メタデータ) (2023-02-11T14:45:31Z) - On the Statistical Complexity of Estimation and Testing under Privacy Constraints [17.04261371990489]
差分プライバシー下での統計的テストのパワーをプラグアンドプレイ方式で特徴付ける方法を示す。
プライバシ保護のレベルが非常に高い場合にのみ、プライバシの維持が顕著なパフォーマンス低下をもたらすことを示す。
最後に,プライベート凸解法であるDP-SGLDアルゴリズムを高信頼度で最大推定できることを示した。
論文 参考訳(メタデータ) (2022-10-05T12:55:53Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
我々は、属性ごとのプライバシー保証を定量化できる部分微分プライバシー(DP)について検討する。
本研究では,複数の基本データ分析および学習タスクについて検討し,属性ごとのプライバシパラメータが個人全体のプライバシーパラメータよりも小さい設計アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2022-09-08T22:43:50Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
しかし、スパースデータセットを共有するという点では、差分プライバシーがプライバシのゴールドスタンダードとして浮上している。
本研究では、スムーズな$k$匿名性(スムーズな$k$匿名性)と、スムーズな$k$匿名性(スムーズな$k$匿名性)を提供する単純な大規模アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-07-13T17:09:25Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
DP-SGDで訓練されたモデルをリリースする際の個々の事例に対するプライバシー保証を特徴付ける。
ほとんどの例では、最悪のケースよりも強力なプライバシー保証を享受しています。
これは、モデルユーティリティの観点からは守られないグループが同時に、より弱いプライバシー保証を経験することを意味する。
論文 参考訳(メタデータ) (2022-06-06T13:49:37Z) - Learning with User-Level Privacy [61.62978104304273]
ユーザレベルの差分プライバシー制約下での学習課題を,アルゴリズムを用いて解析する。
個々のサンプルのプライバシーのみを保証するのではなく、ユーザレベルのdpはユーザの貢献全体を保護します。
プライバシコストが$tau$に比例した$K$適応的に選択されたクエリのシーケンスにプライベートに答えるアルゴリズムを導き出し、私たちが検討する学習タスクを解決するためにそれを適用します。
論文 参考訳(メタデータ) (2021-02-23T18:25:13Z) - Individual Privacy Accounting via a Renyi Filter [33.65665839496798]
個人ごとのパーソナライズされたプライバシ損失推定値に基づいて、より厳格なプライバシ損失会計を行う方法を提案する。
我々のフィルターは、Rogersらによる$(epsilon,delta)$-differential privacyの既知のフィルタよりもシンプルできつい。
論文 参考訳(メタデータ) (2020-08-25T17:49:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。