Attention-based Reinforcement Learning for Combinatorial Optimization: Application to Job Shop Scheduling Problem
- URL: http://arxiv.org/abs/2401.16580v2
- Date: Mon, 18 Mar 2024 17:57:22 GMT
- Title: Attention-based Reinforcement Learning for Combinatorial Optimization: Application to Job Shop Scheduling Problem
- Authors: Jaejin Lee, Seho Kee, Mani Janakiram, George Runger,
- Abstract summary: This study proposes an innovative attention-based reinforcement learning method specifically designed for the category of job shop scheduling problems.
A key finding of this research is the ability of our trained learners within the proposed method to be repurposed for larger-scale problems that were not part of the initial training set.
- Score: 2.024210754085351
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Job shop scheduling problems represent a significant and complex facet of combinatorial optimization problems, which have traditionally been addressed through either exact or approximate solution methodologies. However, the practical application of these solutions is often challenged due to the complexity of real-world problems. Even when utilizing an approximate solution approach, the time required to identify a near-optimal solution can be prohibitively extensive, and the solutions derived are generally not applicable to new problems. This study proposes an innovative attention-based reinforcement learning method specifically designed for the category of job shop scheduling problems. This method integrates a policy gradient reinforcement learning approach with a modified transformer architecture. A key finding of this research is the ability of our trained learners within the proposed method to be repurposed for larger-scale problems that were not part of the initial training set. Furthermore, empirical evidence demonstrates that our approach surpasses the results of recent studies and outperforms commonly implemented heuristic rules. This suggests that our method offers a promising avenue for future research and practical application in the field of job shop scheduling problems.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Combinatorial Optimization with Policy Adaptation using Latent Space Search [44.12073954093942]
We present a novel approach for designing performant algorithms to solve complex, typically NP-hard, problems.
We show that our search strategy outperforms state-of-the-art approaches on 11 standard benchmarking tasks.
arXiv Detail & Related papers (2023-11-13T12:24:54Z) - Thought Propagation: An Analogical Approach to Complex Reasoning with Large Language Models [62.96551299003463]
We propose textbftextitThought Propagation (TP) to enhance the complex reasoning ability of Large Language Models.
TP first prompts LLMs to propose and solve a set of analogous problems that are related to the input one.
TP reuses the results of analogous problems to directly yield a new solution or derive a knowledge-intensive plan for execution to amend the initial solution obtained from scratch.
arXiv Detail & Related papers (2023-10-06T01:40:09Z) - Reinforcement Learning Approach for Multi-Agent Flexible Scheduling
Problems [0.0]
This research presents a Reinforcement Learning approach for scheduling problems.
In particular, this study delivers an OpenAI gym environment with search-space reduction for Job Shop Scheduling Problems.
arXiv Detail & Related papers (2022-10-07T16:31:01Z) - Solving the capacitated vehicle routing problem with timing windows
using rollouts and MAX-SAT [4.873362301533824]
Vehicle routing is a well known class of NP-hard optimisation problems.
Recent work in reinforcement learning has been a promising alternative approach.
This paper proposes a hybrid approach that combines reinforcement learning, policy rollouts, and a satisfiability.
arXiv Detail & Related papers (2022-06-14T06:27:09Z) - Efficient lifting of symmetry breaking constraints for complex
combinatorial problems [9.156939957189502]
This work extends the learning framework and implementation of a model-based approach for Answer Set Programming.
In particular, we incorporate a new conflict analysis algorithm in the Inductive Logic Programming system ILASP.
arXiv Detail & Related papers (2022-05-14T20:42:13Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Discovering Diverse Solutions in Deep Reinforcement Learning [84.45686627019408]
Reinforcement learning algorithms are typically limited to learning a single solution of a specified task.
We propose an RL method that can learn infinitely many solutions by training a policy conditioned on a continuous or discrete low-dimensional latent variable.
arXiv Detail & Related papers (2021-03-12T04:54:31Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - Importance Weighted Policy Learning and Adaptation [89.46467771037054]
We study a complementary approach which is conceptually simple, general, modular and built on top of recent improvements in off-policy learning.
The framework is inspired by ideas from the probabilistic inference literature and combines robust off-policy learning with a behavior prior.
Our approach achieves competitive adaptation performance on hold-out tasks compared to meta reinforcement learning baselines and can scale to complex sparse-reward scenarios.
arXiv Detail & Related papers (2020-09-10T14:16:58Z) - Reinforcement Learning for Combinatorial Optimization: A Survey [12.323976053967066]
Many traditional algorithms for solving optimization problems involve using hand-crafteds that sequentially construct a solution.
Reinforcement learning (RL) proposes a good alternative to automate the search of theses by training an agent in a supervised or self-supervised manner.
arXiv Detail & Related papers (2020-03-07T16:19:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.