Reinforcement Learning Approach for Multi-Agent Flexible Scheduling
Problems
- URL: http://arxiv.org/abs/2210.03674v1
- Date: Fri, 7 Oct 2022 16:31:01 GMT
- Title: Reinforcement Learning Approach for Multi-Agent Flexible Scheduling
Problems
- Authors: Hongjian Zhou, Boyang Gu, Chenghao Jin
- Abstract summary: This research presents a Reinforcement Learning approach for scheduling problems.
In particular, this study delivers an OpenAI gym environment with search-space reduction for Job Shop Scheduling Problems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scheduling plays an important role in automated production. Its impact can be
found in various fields such as the manufacturing industry, the service
industry and the technology industry. A scheduling problem (NP-hard) is a task
of finding a sequence of job assignments on a given set of machines with the
goal of optimizing the objective defined. Methods such as Operation Research,
Dispatching Rules, and Combinatorial Optimization have been applied to
scheduling problems but no solution guarantees to find the optimal solution.
The recent development of Reinforcement Learning has shown success in
sequential decision-making problems. This research presents a Reinforcement
Learning approach for scheduling problems. In particular, this study delivers
an OpenAI gym environment with search-space reduction for Job Shop Scheduling
Problems and provides a heuristic-guided Q-Learning solution with
state-of-the-art performance for Multi-agent Flexible Job Shop Problems.
Related papers
- Offline reinforcement learning for job-shop scheduling problems [1.3927943269211593]
This paper introduces a novel offline RL method designed for optimization problems with complex constraints.
Our approach encodes actions in edge attributes and balances expected rewards with the imitation of expert solutions.
We demonstrate the effectiveness of this method on job-shop scheduling and flexible job-shop scheduling benchmarks.
arXiv Detail & Related papers (2024-10-21T07:33:42Z) - Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
This paper supports robotic parts-to-picker operations in warehousing by optimizing order-workstation assignments, item-pod assignments and the schedule of order fulfillment at workstations.
We solve it via large-scale neighborhood search, with a novel learn-then-optimize approach to subproblem generation.
In collaboration with Amazon Robotics, we show that our model and algorithm generate much stronger solutions for practical problems than state-of-the-art approaches.
arXiv Detail & Related papers (2024-08-29T20:22:22Z) - Contractual Reinforcement Learning: Pulling Arms with Invisible Hands [68.77645200579181]
We propose a theoretical framework for aligning economic interests of different stakeholders in the online learning problems through contract design.
For the planning problem, we design an efficient dynamic programming algorithm to determine the optimal contracts against the far-sighted agent.
For the learning problem, we introduce a generic design of no-regret learning algorithms to untangle the challenges from robust design of contracts to the balance of exploration and exploitation.
arXiv Detail & Related papers (2024-07-01T16:53:00Z) - Attention-based Reinforcement Learning for Combinatorial Optimization: Application to Job Shop Scheduling Problem [2.024210754085351]
This study proposes an innovative attention-based reinforcement learning method specifically designed for the category of job shop scheduling problems.
A key finding of this research is the ability of our trained learners within the proposed method to be repurposed for larger-scale problems that were not part of the initial training set.
arXiv Detail & Related papers (2024-01-29T21:31:54Z) - Accelerate Presolve in Large-Scale Linear Programming via Reinforcement
Learning [92.31528918811007]
We propose a simple and efficient reinforcement learning framework -- namely, reinforcement learning for presolve (RL4Presolve) -- to tackle (P1)-(P3) simultaneously.
Experiments on two solvers and eight benchmarks (real-world and synthetic) demonstrate that RL4Presolve significantly and consistently improves the efficiency of solving large-scale LPs.
arXiv Detail & Related papers (2023-10-18T09:51:59Z) - A Reinforcement Learning Approach for Scheduling Problems With Improved
Generalization Through Order Swapping [0.0]
JSSP falls into the category of NP-hard COP, in which solving the problem through exhaustive search becomes unfeasible.
In recent years, the research towards using DRL to solve COP has gained interest and has shown promising results in terms of solution quality and computational efficiency.
In particular, we employ the PPO algorithm that adopts the policy-gradient paradigm that is found to perform well in the constrained dispatching of jobs.
arXiv Detail & Related papers (2023-02-27T16:45:04Z) - Multi-Task Learning with Sequence-Conditioned Transporter Networks [67.57293592529517]
We aim to solve multi-task learning through the lens of sequence-conditioning and weighted sampling.
We propose a new suite of benchmark aimed at compositional tasks, MultiRavens, which allows defining custom task combinations.
Second, we propose a vision-based end-to-end system architecture, Sequence-Conditioned Transporter Networks, which augments Goal-Conditioned Transporter Networks with sequence-conditioning and weighted sampling.
arXiv Detail & Related papers (2021-09-15T21:19:11Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - SeaPearl: A Constraint Programming Solver guided by Reinforcement
Learning [0.0]
This paper presents the proof of concept for SeaPearl, a new constraint programming solver implemented in Julia.
SeaPearl supports machine learning routines in order to learn branching decisions using reinforcement learning.
Although not yet competitive with industrial solvers, SeaPearl aims to provide a flexible and open-source framework.
arXiv Detail & Related papers (2021-02-18T07:34:38Z) - Task-Optimal Exploration in Linear Dynamical Systems [29.552894877883883]
We study task-guided exploration and determine what precisely an agent must learn about their environment in order to complete a task.
We provide instance- and task-dependent lower bounds which explicitly quantify the difficulty of completing a task of interest.
We show that it optimally explores the environment, collecting precisely the information needed to complete the task, and provide finite-time bounds guaranteeing that it achieves the instance- and task-optimal sample complexity.
arXiv Detail & Related papers (2021-02-10T01:42:22Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.