論文の概要: LeftoverLocals: Listening to LLM Responses Through Leaked GPU Local Memory
- arxiv url: http://arxiv.org/abs/2401.16603v1
- Date: Mon, 29 Jan 2024 22:21:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 07:57:54.867989
- Title: LeftoverLocals: Listening to LLM Responses Through Leaked GPU Local Memory
- Title(参考訳): leftoverLocals: リークしたGPUローカルメモリを通じてLLM応答を聴く
- Authors: Tyler Sorensen, Heidy Khlaaf,
- Abstract要約: この記事では、Apple、Qualcomm、AMD GPU上の別のプロセスによって生成されたGPUメモリからデータリカバリを可能にする脆弱性であるLeftoverLocalsについて説明する。
leftoverLocalsはGPUアプリケーションのセキュリティ姿勢に影響を与え、特に影響のあるGPU上で動作するLLMとMLモデルにおいて重要である。
- 参考スコア(独自算出の注目度): 0.11510009152620666
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes LeftoverLocals: a vulnerability that allows data recovery from GPU memory created by another process on Apple, Qualcomm, and AMD GPUs. LeftoverLocals impacts the security posture of GPU applications, with particular significance to LLMs and ML models that run on impacted GPUs. By recovering local memory, an optimized GPU memory region, we built a PoC where an attacker can listen into another user's interactive LLM session (e.g., llama.cpp) across process or container boundaries.
- Abstract(参考訳): この記事では、Apple、Qualcomm、AMD GPU上の別のプロセスによって生成されたGPUメモリからデータリカバリを可能にする脆弱性であるLeftoverLocalsについて説明する。
leftoverLocalsはGPUアプリケーションのセキュリティ姿勢に影響を与え、特に影響のあるGPU上で動作するLLMとMLモデルにおいて重要である。
ローカルメモリ、最適化されたGPUメモリ領域を回復することで、攻撃者はプロセスやコンテナの境界を越えて、別のユーザの対話型LLMセッション(例:llama.cpp)に耳を傾けることができるPoCを構築しました。
関連論文リスト
- Efficient LLM Inference with I/O-Aware Partial KV Cache Recomputation [7.204881999658682]
大規模言語モデル(LLM)の推論は計算的に要求される。
自動回帰デコーディングのコストを削減するため、キーバリュー(KV)キャッシングは中間アクティベーションを格納するために使用される。
KVキャッシュに必要なメモリは急速に増加し、しばしばGPUメモリの容量を超える。
コスト効率のよい代替手段は、KVキャッシュをCPUメモリにオフロードすることであり、これはGPUメモリの圧力を軽減するが、ボトルネックをCPUとGPU間のPCIe接続の限られた帯域にシフトさせる。
論文 参考訳(メタデータ) (2024-11-26T04:03:14Z) - Deep Optimizer States: Towards Scalable Training of Transformer Models Using Interleaved Offloading [2.8231000588510757]
トランスフォーマーと大規模言語モデル(LLM)は、すべてのドメインで急速に採用されている。
変圧器の訓練は非常に高価で、しばしば記憶壁にぶつかる」
本稿では,LLMをCPUまたはGPU上で更新フェーズをスケジュールしたサブグループに分割する手法を提案する。
論文 参考訳(メタデータ) (2024-10-26T00:43:59Z) - vTensor: Flexible Virtual Tensor Management for Efficient LLM Serving [53.972175896814505]
大規模言語モデル(LLM)は様々なドメインで広く使われ、数百万の日次要求を処理する。
大規模言語モデル(LLM)は様々なドメインで広く使われ、数百万の日次要求を処理する。
論文 参考訳(メタデータ) (2024-07-22T14:37:58Z) - Endor: Hardware-Friendly Sparse Format for Offloaded LLM Inference [47.043257902725294]
本研究では, 圧縮率が高く, 減圧オーバーヘッドの少ない非ゼロ値に対して, 刈り取られたLLM重みの非構造スパースパターンを圧縮する新しいスパース形式を提案する。
一般的なHugingface Accelerateを使ったオフロード推論と比較して、EndorはOPT-66Bを1.70倍、Llama2-70Bを1.78倍加速する。
論文 参考訳(メタデータ) (2024-06-17T15:55:08Z) - MemLLM: Finetuning LLMs to Use An Explicit Read-Write Memory [49.96019697955383]
本稿では,構造化および明示的な読み書きメモリモジュールを統合することで,知識能力を向上させる新しい手法であるMemLLMを紹介する。
実験の結果,MemLLMは言語モデリング全般,特に言語モデルにおいて,性能と解釈可能性を向上させることが示唆された。
私たちは MemLLM を,メモリ拡張による LLM の基盤化と現実化に向けた重要なステップと捉えています。
論文 参考訳(メタデータ) (2024-04-17T18:13:16Z) - LLMem: Estimating GPU Memory Usage for Fine-Tuning Pre-Trained LLMs [4.536118764799076]
ハードウェアに制限がある微調整済みの大規模言語モデルでは、GPUメモリの制約が問題となっている。
LLMemは、分散微調整法を適用する際のGPUメモリ消費を推定するソリューションである。
LLMemは1つのGPU上でのピークGPUメモリ使用量を正確に推定し、エラー率は最大1.6%であることを示す。
論文 参考訳(メタデータ) (2024-04-16T22:11:35Z) - Efficient Video Object Segmentation via Modulated Cross-Attention Memory [123.12273176475863]
頻繁なメモリ拡張を必要とせず、時間的滑らかさをモデル化するトランスフォーマーベースの手法MAVOSを提案する。
我々のMAVOSは、単一のV100 GPU上で37フレーム/秒(FPS)で動作しながら、J&Fスコア63.3%を達成する。
論文 参考訳(メタデータ) (2024-03-26T17:59:58Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
我々は、巨大な未使用のコンシューマレベルのGPUをアンロックする分散システムを構想する。
このシステムは、CPUとGPUメモリの制限、ネットワーク帯域幅の低さ、ピアとデバイスの多様性など、重要な課題に直面している。
論文 参考訳(メタデータ) (2023-09-03T13:27:56Z) - Full Parameter Fine-tuning for Large Language Models with Limited Resources [55.794732214059806]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらしたが、トレーニングには大量のGPUリソースを必要としている。
我々は,メモリ使用量を削減するために,勾配とパラメータの更新を1ステップで融合する新しい計算,LOMO(LOw-Memory Optimization)を提案する。
論文 参考訳(メタデータ) (2023-06-16T11:37:15Z) - An Analysis of Collocation on GPUs for Deep Learning Training [0.0]
マルチインスタンスGPU(MIG)はNVIDIAが導入した新しい技術で、GPUをより良いワークロードに分割することができる。
本稿では,MIG対応A100 GPUの各種サイズとモデルの組み合わせを含むディープラーニングワークロードにおける性能について検討する。
論文 参考訳(メタデータ) (2022-09-13T14:13:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。