A Literature Review on Fetus Brain Motion Correction in MRI
- URL: http://arxiv.org/abs/2401.16782v1
- Date: Tue, 30 Jan 2024 06:43:40 GMT
- Title: A Literature Review on Fetus Brain Motion Correction in MRI
- Authors: Haoran Zhang, Yun Wang
- Abstract summary: It includes traditional 3D fetal MRI correction methods like Slice to Volume Registration (SVR), deep learning-based techniques such as Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) Networks, Transformers, Generative Adversarial Networks (GANs)
The insights derived from this literature review reflect a thorough understanding of both the technical intricacies and practical implications of fetal motion in MRI studies, offering a reasoned perspective on potential solutions and future improvements in this field.
- Score: 26.55520964963958
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper provides a comprehensive review of the latest advancements in
fetal motion correction in MRI. We delve into various contemporary
methodologies and technological advancements aimed at overcoming these
challenges. It includes traditional 3D fetal MRI correction methods like Slice
to Volume Registration (SVR), deep learning-based techniques such as
Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) Networks,
Transformers, Generative Adversarial Networks (GANs) and most recent
advancements of Diffusion Models. The insights derived from this literature
review reflect a thorough understanding of both the technical intricacies and
practical implications of fetal motion in MRI studies, offering a reasoned
perspective on potential solutions and future improvements in this field.
Related papers
- Enhance the Image: Super Resolution using Artificial Intelligence in MRI [10.00462384555522]
This chapter provides an overview of deep learning techniques for improving the spatial resolution of MRI.
We discuss challenges and potential future directions regarding the feasibility and reliability of deep learning-based MRI super-resolution.
arXiv Detail & Related papers (2024-06-19T15:19:41Z) - Deep Learning for Accelerated and Robust MRI Reconstruction: a Review [28.663292249133864]
Deep learning (DL) has emerged as a pivotal technology for enhancing magnetic resonance imaging (MRI)
This review paper provides a comprehensive overview of recent advances in DL for MRI reconstruction.
arXiv Detail & Related papers (2024-04-24T07:02:03Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Recurrent Variational Network: A Deep Learning Inverse Problem Solver
applied to the task of Accelerated MRI Reconstruction [3.058685580689605]
We present a novel Deep Learning-based Inverse Problem solver applied to the task of accelerated MRI reconstruction.
The RecurrentVarNet consists of multiple blocks, each responsible for one unrolled iteration of the gradient descent algorithm for solving inverse problems.
Our proposed method achieves new state of the art qualitative and quantitative reconstruction results on 5-fold and 10-fold accelerated data from a public multi-channel brain dataset.
arXiv Detail & Related papers (2021-11-18T11:44:04Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
We propose a novel Dimension Fusion Edge-guided network (DFENet) that can meet both of these requirements by fusing the features of 2D and 3D CNNs.
The proposed model is robust, accurate, superior to the existing methods, and can be relied upon for biomedical applications.
arXiv Detail & Related papers (2021-05-17T15:43:59Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
Machine learning and computer vision methods are showing good performance in medical imagery analysis.
Yet only a few applications are now in clinical use.
Poor transferability of themodels to data from different sources or acquisition domains is one of the reasons for that.
arXiv Detail & Related papers (2020-10-14T16:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.