Entropy production rate and correlations of cavity magnomechanical
system
- URL: http://arxiv.org/abs/2401.16857v1
- Date: Tue, 30 Jan 2024 10:00:44 GMT
- Title: Entropy production rate and correlations of cavity magnomechanical
system
- Authors: Collins O. Edet, Muhammad Asjad, Denys Dutykh, Norshamsuri Ali and
Obinna Abah
- Abstract summary: We present the irreversibility generated by a stationary cavity magnomechanical system composed of a yttrium iron garnet (YIG) sphere with a diameter of a few hundred micrometers inside a microwave cavity.
We find that the behavior of the entropy flow between the cavity photon mode and the phonon mode is determined by the magnon-photon coupling and the cavity photon dissipation rate.
Our results demonstrate the possibility of exploring irreversibility in driven magnon-based hybrid quantum systems and open a promising route for quantum thermal applications.
- Score: 0.44998333629984877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present the irreversibility generated by a stationary cavity
magnomechanical system composed of a yttrium iron garnet (YIG) sphere with a
diameter of a few hundred micrometers inside a microwave cavity. In this
system, the magnons, i.e., collective spin excitations in the sphere, are
coupled to the cavity photon mode via magnetic dipole interaction and to the
phonon mode via magnetostrictive force (optomechanical-like). We employ the
quantum phase space formulation of the entropy change to evaluate the
steady-state entropy production rate and associated quantum correlation in the
system. We find that the behavior of the entropy flow between the cavity photon
mode and the phonon mode is determined by the magnon-photon coupling and the
cavity photon dissipation rate. Interestingly, the entropy production rate can
increase/decrease depending on the strength of the magnon-photon coupling and
the detuning parameters. We further show that the amount of correlations
between the magnon and phonon modes is linked to the irreversibility generated
in the system for small magnon-photon coupling. Our results demonstrate the
possibility of exploring irreversibility in driven magnon-based hybrid quantum
systems and open a promising route for quantum thermal applications.
Related papers
- Cavity-Quantum Electrodynamics with Moiré Flatband Photonic Crystals [35.119260614523256]
A quantum dot can be tuned by a factor of 40, ranging from 42 ps to 1692 ps, which is attributed to strong Purcell enhancement and Purcell inhibition effects.
Our findings pave the way for moir'e flatband cavity-enhanced quantum light sources, quantum optical switches, and quantum nodes for quantum internet applications.
arXiv Detail & Related papers (2024-11-25T18:52:11Z) - Microwave-Optical Entanglement from Pulse-pumped Electro-optomechanics [1.9672172405344497]
Entangling microwave and optical photons is one of the promising ways to realize quantum transduction through quantum teleportation.
This paper investigates the entanglement of microwave-optical photon pairs generated from an electro-optomechanical system driven by a blue-detuned pulsed Gaussian pump.
arXiv Detail & Related papers (2024-07-26T22:13:54Z) - Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Strong coupling between a single photon and a photon pair [43.14346227009377]
We report an experimental observation of the strong coupling between a single photon and a photon pair in an ultrastrongly-coupled circuit-QED system.
Results represent a key step towards a new regime of quantum nonlinear optics.
arXiv Detail & Related papers (2024-01-05T10:23:14Z) - Distant entanglement via photon hopping in a coupled magnomechanical
system [0.0]
We find significant bipartite entanglement between indirectly coupled subsystems in coupled microwave cavities.
A single photon hopping parameter significantly affects both the degree as well as the transfer of quantum entanglement between various bipartitions.
arXiv Detail & Related papers (2023-07-18T16:43:43Z) - Reservoir engineering strong quantum entanglement in cavity
magnomechanical systems [8.590363269272698]
We construct a hybrid cavity magnomechanical system to transfer the bipartite entanglements and achieve the strong microwave photon-phonon entanglement.
The scheme may provides potential applications for quantum information processing, and is expected to be extended to other three-mode systems.
arXiv Detail & Related papers (2022-06-29T02:12:55Z) - Optomagnonics in dispersive media: magnon-photon coupling enhancement at
the epsilon-near-zero frequency [0.0]
Single-magnon photon optomagnonic coupling can be comparable to the uniform magnon's frequency for small magnetic volumes.
Non-linear energy spectrum intrinsic to this coupling regime regime can be probed via the characteristic multiple magnon sidebands in the photon power spectrum.
arXiv Detail & Related papers (2021-10-06T18:00:22Z) - Driven-dissipative Quantum Dynamics in Cavity Magnon-Polariton System [4.22183654884537]
The dynamics of arbitrary-order quantum correlations in a cavity magnon-polariton system are investigated.
Results demonstrate the rich higher-order quantum dynamics induced by magnetic light-matter interaction.
arXiv Detail & Related papers (2021-07-22T03:42:59Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Entanglement robustness to excitonic spin precession in a quantum dot [43.55994393060723]
A semiconductor quantum dot (QD) is an attractive resource to generate polarization-entangled photon pairs.
We study the excitonic spin precession (flip-flop) in a family of QDs with different excitonic fine-structure splitting (FSS)
Our results reveal that coherent processes leave the time post-selected entanglement of QDs unaffected while changing the eigenstates of the system.
arXiv Detail & Related papers (2020-01-31T13:50:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.