Dynamic MRI reconstruction using low-rank plus sparse decomposition with
smoothness regularization
- URL: http://arxiv.org/abs/2401.16928v1
- Date: Tue, 30 Jan 2024 11:52:35 GMT
- Title: Dynamic MRI reconstruction using low-rank plus sparse decomposition with
smoothness regularization
- Authors: Chee-Ming Ting, Fuad Noman, Rapha\"el C.-W. Phan, Hernando Ombao
- Abstract summary: We propose a smoothness-regularized L+S (SR-L+S) model for dMRI reconstruction from highly undersampled k-t-space data.
We exploit joint low-rank and smooth priors on the background component of dMRI to better capture both its global and local temporal correlated structures.
- Score: 13.784906186556016
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The low-rank plus sparse (L+S) decomposition model has enabled better
reconstruction of dynamic magnetic resonance imaging (dMRI) with separation
into background (L) and dynamic (S) component. However, use of low-rank prior
alone may not fully explain the slow variations or smoothness of the background
part at the local scale. In this paper, we propose a smoothness-regularized L+S
(SR-L+S) model for dMRI reconstruction from highly undersampled k-t-space data.
We exploit joint low-rank and smooth priors on the background component of dMRI
to better capture both its global and local temporal correlated structures.
Extending the L+S formulation, the low-rank property is encoded by the nuclear
norm, while the smoothness by a general \ell_{p}-norm penalty on the local
differences of the columns of L. The additional smoothness regularizer can
promote piecewise local consistency between neighboring frames. By smoothing
out the noise and dynamic activities, it allows accurate recovery of the
background part, and subsequently more robust dMRI reconstruction. Extensive
experiments on multi-coil cardiac and synthetic data shows that the SR-L+S
model outp
Related papers
- Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models [2.5412006057370893]
Implicit neural representation (INR) has emerged as a powerful paradigm for solving inverse problems.
Our proposed framework can be a generalizable framework to solve inverse problems in other medical imaging tasks.
arXiv Detail & Related papers (2024-07-03T01:37:56Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - Robust Depth Linear Error Decomposition with Double Total Variation and
Nuclear Norm for Dynamic MRI Reconstruction [15.444386058967579]
There are still problems with dynamic MRI k-space reconstruction based on Compressed Sensing (CS)
In this paper, we propose a novel robust lowrank dynamic MRI reconstruction optimization model via highly under-sampled Fourier Transform (DFT)
Experiments on dynamic MRI data demonstrate the superior performance proposed method in terms of both reconstruction accuracy and time complexity.
arXiv Detail & Related papers (2023-10-23T13:34:59Z) - Cine cardiac MRI reconstruction using a convolutional recurrent network
with refinement [9.173298795526152]
We investigate the use of a convolutional recurrent neural network (CRNN) architecture to exploit temporal correlations in cardiac MRI reconstruction.
This is combined with a single-image super-resolution refinement module to improve single coil reconstruction by 4.4% in structural similarity and 3.9% in normalised mean square error.
The proposed model demonstrates considerable enhancements compared to the baseline case and holds promising potential for further improving cardiac MRI reconstruction.
arXiv Detail & Related papers (2023-09-23T14:07:04Z) - Spatiotemporal implicit neural representation for unsupervised dynamic
MRI reconstruction [11.661657147506519]
Implicit Neuraltruth (INR) has appeared as powerful DL-based tool for solving the inverse problem.
In this work, we proposed an INR-based method to improve dynamic MRI reconstruction from highly undersampled k-space data.
The proposed INR represents the dynamic MRI images as an implicit function and encodes them into neural networks.
arXiv Detail & Related papers (2022-12-31T05:43:21Z) - Orthogonal Matrix Retrieval with Spatial Consensus for 3D Unknown-View
Tomography [58.60249163402822]
Unknown-view tomography (UVT) reconstructs a 3D density map from its 2D projections at unknown, random orientations.
The proposed OMR is more robust and performs significantly better than the previous state-of-the-art OMR approach.
arXiv Detail & Related papers (2022-07-06T21:40:59Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
We propose a recurrent transformer model, namely textbfReconFormer, for MRI reconstruction.
It can iteratively reconstruct high fertility magnetic resonance images from highly under-sampled k-space data.
We show that it achieves significant improvements over the state-of-the-art methods with better parameter efficiency.
arXiv Detail & Related papers (2022-01-23T21:58:19Z) - Robust Compressed Sensing MRI with Deep Generative Priors [84.69062247243953]
We present the first successful application of the CSGM framework on clinical MRI data.
We train a generative prior on brain scans from the fastMRI dataset, and show that posterior sampling via Langevin dynamics achieves high quality reconstructions.
arXiv Detail & Related papers (2021-08-03T08:52:06Z) - Two-Stage Self-Supervised Cycle-Consistency Network for Reconstruction
of Thin-Slice MR Images [62.4428833931443]
The thick-slice magnetic resonance (MR) images are often structurally blurred in coronal and sagittal views.
Deep learning has shown great potential to re-construct the high-resolution (HR) thin-slice MR images from those low-resolution (LR) cases.
We propose a novel Two-stage Self-supervised Cycle-consistency Network (TSCNet) for MR slice reconstruction.
arXiv Detail & Related papers (2021-06-29T13:29:18Z) - Deep Low-rank plus Sparse Network for Dynamic MR Imaging [18.09395940969876]
We propose a model-based low-rank plus sparse network, dubbed L+S-Net, for dynamic MR reconstruction.
Experiments on retrospective and prospective cardiac cine datasets show that the proposed model outperforms state-of-the-art CS and existing deep learning methods.
arXiv Detail & Related papers (2020-10-26T15:55:24Z) - Modal Regression based Structured Low-rank Matrix Recovery for
Multi-view Learning [70.57193072829288]
Low-rank Multi-view Subspace Learning has shown great potential in cross-view classification in recent years.
Existing LMvSL based methods are incapable of well handling view discrepancy and discriminancy simultaneously.
We propose Structured Low-rank Matrix Recovery (SLMR), a unique method of effectively removing view discrepancy and improving discriminancy.
arXiv Detail & Related papers (2020-03-22T03:57:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.