Segmentation and Characterization of Macerated Fibers and Vessels Using Deep Learning
- URL: http://arxiv.org/abs/2401.16937v2
- Date: Tue, 18 Jun 2024 11:02:49 GMT
- Title: Segmentation and Characterization of Macerated Fibers and Vessels Using Deep Learning
- Authors: Saqib Qamar, Abu Imran Baba, Stéphane Verger, Magnus Andersson,
- Abstract summary: We develop an automatic deep learning segmentation approach for wood microscopy images.
The model can analyze 32,640 x 25,920 pixels images and demonstrate effective cell detection and segmentation, achieving a mAP_0.5-0.95 of 78 %.
We create a user-friendly web application for image analysis and provided the code for use on Google Colab.
- Score: 0.48748194765816943
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wood comprises different cell types, such as fibers, tracheids and vessels, defining its properties. Studying cells' shape, size, and arrangement in microscopy images is crucial for understanding wood characteristics. Typically, this involves macerating (soaking) samples in a solution to separate cells, then spreading them on slides for imaging with a microscope that covers a wide area, capturing thousands of cells. However, these cells often cluster and overlap in images, making the segmentation difficult and time-consuming using standard image-processing methods. In this work, we developed an automatic deep learning segmentation approach that utilizes the one-stage YOLOv8 model for fast and accurate segmentation and characterization of macerated fiber and vessel form aspen trees in microscopy images. The model can analyze 32,640 x 25,920 pixels images and demonstrate effective cell detection and segmentation, achieving a mAP_{0.5-0.95} of 78 %. To assess the model's robustness, we examined fibers from a genetically modified tree line known for longer fibers. The outcomes were comparable to previous manual measurements. Additionally, we created a user-friendly web application for image analysis and provided the code for use on Google Colab. By leveraging YOLOv8's advances, this work provides a deep learning solution to enable efficient quantification and analysis of wood cells suitable for practical applications.
Related papers
- DiffKillR: Killing and Recreating Diffeomorphisms for Cell Annotation in Dense Microscopy Images [105.46086313858062]
We introduce DiffKillR, a novel framework that reframes cell annotation as the combination of archetype matching and image registration tasks.
We will discuss the theoretical properties of DiffKillR and validate it on three microscopy tasks, demonstrating its advantages over existing supervised, semi-supervised, and unsupervised methods.
arXiv Detail & Related papers (2024-10-04T00:38:29Z) - Histopathological Image Classification with Cell Morphology Aware Deep Neural Networks [11.749248917866915]
We propose a novel DeepCMorph model pre-trained to learn cell morphology and identify a large number of different cancer types.
We pretrained this module on the Pan-Cancer TCGA dataset consisting of over 270K tissue patches extracted from 8736 diagnostic slides from 7175 patients.
The proposed solution achieved a new state-of-the-art performance on the dataset under consideration, detecting 32 cancer types with over 82% accuracy and outperforming all previously proposed solutions by more than 4%.
arXiv Detail & Related papers (2024-07-11T16:03:59Z) - Multi-stream Cell Segmentation with Low-level Cues for Multi-modality
Images [66.79688768141814]
We develop an automatic cell classification pipeline to label microscopy images.
We then train a classification model based on the category labels.
We deploy two types of segmentation models to segment cells with roundish and irregular shapes.
arXiv Detail & Related papers (2023-10-22T08:11:08Z) - Automating Wood Species Detection and Classification in Microscopic
Images of Fibrous Materials with Deep Learning [1.231476564107544]
We have developed a methodology for the systematic generation of a large image dataset of macerated wood references.
This is the basis for a substantial approach to automate, for the first time, the identification of hardwood species in microscopic images of fibrous materials by deep learning.
arXiv Detail & Related papers (2023-07-18T19:51:28Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
We propose a deep-learning framework to detect and classify areas of microscopic images with similar levels of gene expression.
The data we analyze requires an unsupervised learning model for which we employ a type of Artificial Neural Network - Deep Learning Autoencoders.
arXiv Detail & Related papers (2023-04-19T13:45:28Z) - Contrastive Learning for Mitochondria Segmentation [42.800475494933146]
We propose a novel contrastive learning framework to learn a better feature representation from hard examples to improve mitochondrial segmentation.
We show the effectiveness of our method on MitoEM dataset as well as FIB-SEM dataset and show better or on par with state-of-the-art results.
arXiv Detail & Related papers (2021-09-25T13:15:26Z) - A fully automated end-to-end process for fluorescence microscopy images
of yeast cells: From segmentation to detection and classification [0.0]
We build an end-to-end process to automatically segment, detect and classify cell compartments of fluorescence microscopy images of yeast cells.
This fully automated process is intended to be integrated into an interactive e-Science server in the PerICo1 project.
Although the application domain is optical microscopy in yeast cells, the method is also applicable to multiple-cell images in medical applications.
arXiv Detail & Related papers (2021-04-06T21:24:50Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
We classify biomedical images using ensembles of neural networks.
We select our activations among the following ones: ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign.
arXiv Detail & Related papers (2020-11-24T01:53:39Z) - Multiclass Yeast Segmentation in Microstructured Environments with Deep
Learning [20.456742449675904]
We present convolutional neural networks trained for multiclass segmenting of individual yeast cells.
We showcase the method's contribution to segmenting yeast in microstructured environments with a typical synthetic biology application.
arXiv Detail & Related papers (2020-11-16T16:16:13Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Learning to segment clustered amoeboid cells from brightfield microscopy
via multi-task learning with adaptive weight selection [6.836162272841265]
We introduce a novel supervised technique for cell segmentation in a multi-task learning paradigm.
A combination of a multi-task loss, based on the region and cell boundary detection, is employed for an improved prediction efficiency of the network.
We observe an overall Dice score of 0.93 on the validation set, which is an improvement of over 15.9% on a recent unsupervised method, and outperforms the popular supervised U-net algorithm by at least $5.8%$ on average.
arXiv Detail & Related papers (2020-05-19T11:31:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.