論文の概要: LoRec: Large Language Model for Robust Sequential Recommendation against Poisoning Attacks
- arxiv url: http://arxiv.org/abs/2401.17723v2
- Date: Fri, 28 Feb 2025 12:56:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 16:38:44.764249
- Title: LoRec: Large Language Model for Robust Sequential Recommendation against Poisoning Attacks
- Title(参考訳): LoRec: 攻撃に対するロバストなシークエンシャルレコメンデーションのための大規模言語モデル
- Authors: Kaike Zhang, Qi Cao, Yunfan Wu, Fei Sun, Huawei Shen, Xueqi Cheng,
- Abstract要約: 本研究は,リコメンデータシステムにおける未知の不正行為の検出におけるLarge Language Models(LLM)の機能に着目した。
逐次リコメンデータシステムのロバスト性を高めるため,LLM強化を利用した高度なフレームワークであるLoRecを提案する。
総合的な実験により、LoRecは一般的なフレームワークとして、シーケンシャルなレコメンデータシステムの堅牢性を大幅に強化することを示した。
- 参考スコア(独自算出の注目度): 60.719158008403376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequential recommender systems stand out for their ability to capture users' dynamic interests and the patterns of item-to-item transitions. However, the inherent openness of sequential recommender systems renders them vulnerable to poisoning attacks, where fraudulent users are injected into the training data to manipulate learned patterns. Traditional defense strategies predominantly depend on predefined assumptions or rules extracted from specific known attacks, limiting their generalizability to unknown attack types. To solve the above problems, considering the rich open-world knowledge encapsulated in Large Language Models (LLMs), our research initially focuses on the capabilities of LLMs in the detection of unknown fraudulent activities within recommender systems, a strategy we denote as LLM4Dec. Empirical evaluations demonstrate the substantial capability of LLMs in identifying unknown fraudsters, leveraging their expansive, open-world knowledge. Building upon this, we propose the integration of LLMs into defense strategies to extend their effectiveness beyond the confines of known attacks. We propose LoRec, an advanced framework that employs LLM-Enhanced Calibration to strengthen the robustness of sequential recommender systems against poisoning attacks. LoRec integrates an LLM-enhanced CalibraTor (LCT) that refines the training process of sequential recommender systems with knowledge derived from LLMs, applying a user-wise reweighting to diminish the impact of fraudsters injected by attacks. By incorporating LLMs' open-world knowledge, the LCT effectively converts the limited, specific priors or rules into a more general pattern of fraudsters, offering improved defenses against poisoning attacks. Our comprehensive experiments validate that LoRec, as a general framework, significantly strengthens the robustness of sequential recommender systems.
- Abstract(参考訳): シークエンシャルレコメンダシステムは、ユーザの動的関心やアイテム間遷移のパターンを捉える能力に際し際立っている。
しかし、シーケンシャルなレコメンデータシステムの本質的な開放性は、不正なユーザが学習パターンを操作するためにトレーニングデータに注入されるような、毒殺攻撃に脆弱である。
従来の防衛戦略は主に、特定の既知の攻撃から抽出された事前定義された仮定やルールに依存し、その一般化性は未知の攻撃タイプに制限される。
本研究は,Lumge Language Models (LLMs) にカプセル化されている豊富なオープンワールド知識を考慮に入れ,まず,レコメンダシステム内の未知の不正行為の検出における LLM の機能,すなわち LLM4Dec という戦略に着目した。
実証的な評価は、LLMが未知の詐欺師を識別し、その広大なオープンワールドの知識を活用していることを示す。
そこで我々は,LLMの防衛戦略への統合を提案し,その効果を既知の攻撃の制限を超えて拡張する。
LLM強化校正を利用する高度なフレームワークであるLoRecを提案し、連続的なレコメンデータシステムの毒性攻撃に対する堅牢性を強化する。
LoRecはLCT(LCM-enhanced CalibraTor)を統合し、LSMから派生した知識でシーケンシャルレコメンデータシステムのトレーニングプロセスを洗練し、攻撃によって注入される詐欺師の影響を減らし、ユーザワイズ・リウェイト(英語版)を適用する。
LLMのオープンワールドの知識を取り入れることで、LCTは制限された特定の先例やルールをより一般的な詐欺師のパターンに効果的に変換し、中毒攻撃に対する防御を改善した。
総合的な実験により、LoRecは一般的なフレームワークとして、シーケンシャルなレコメンデータシステムの堅牢性を大幅に強化することを示した。
関連論文リスト
- CheatAgent: Attacking LLM-Empowered Recommender Systems via LLM Agent [32.958798200220286]
大言語モデル(LLM)を利用したレコメンデーションシステム(RecSys)は、パーソナライズされたユーザーエクスペリエンスに大きな進歩をもたらした。
LLMの人間的な能力を活用して、CheatAgentと呼ばれる新たな攻撃フレームワークを提案する。
提案手法は,入力修正の最小化による最大衝撃に対する挿入位置をまず同定する。
論文 参考訳(メタデータ) (2025-04-13T05:31:37Z) - Retrieval-Augmented Purifier for Robust LLM-Empowered Recommendation [15.098844020816552]
LLM(Large Language Model)を利用したレコメンデーションシステムは、パーソナライズされたレコメンデーションフレームワークに革命をもたらした。
既存のLLMを動力とするRecSysは、小さな摂動に対して非常に脆弱であることが示されている。
有害なユーザプロファイルを浄化するために,外部の協調信号を検索して新しいフレームワーク(RETURN)を提案する。
論文 参考訳(メタデータ) (2025-04-03T10:22:30Z) - MM-PoisonRAG: Disrupting Multimodal RAG with Local and Global Poisoning Attacks [109.53357276796655]
Retrieval Augmented Generation (RAG) を備えたマルチモーダル大言語モデル(MLLM)
RAGはクエリ関連外部知識の応答を基盤としてMLLMを強化する。
この依存は、知識中毒攻撃(英語版)という、危険だが未発見の安全リスクを生じさせる。
本稿では,2つの攻撃戦略を持つ新しい知識中毒攻撃フレームワークMM-PoisonRAGを提案する。
論文 参考訳(メタデータ) (2025-02-25T04:23:59Z) - Attention Tracker: Detecting Prompt Injection Attacks in LLMs [62.247841717696765]
大型言語モデル (LLM) は様々なドメインに革命をもたらしたが、インジェクション攻撃に弱いままである。
そこで本研究では,特定の注意点が本来の指示から注入指示へと焦点を移す,注意散逸効果の概念を紹介した。
本研究では,アテンション・トラッカーを提案する。アテンション・トラッカーは,インジェクション・アタックを検出するために,インストラクション上の注意パターンを追跡する訓練不要な検出手法である。
論文 参考訳(メタデータ) (2024-11-01T04:05:59Z) - Defending Large Language Models Against Attacks With Residual Stream Activation Analysis [0.0]
大規模言語モデル(LLM)は敵の脅威に対して脆弱である。
本稿では, LLM へのホワイトボックスアクセスを前提とした, 革新的な防御戦略を提案する。
そこで本研究では,アタックプロンプト分類のための残差ストリームの固有なアクティベーションパターンを解析するための新しい手法を適用した。
論文 参考訳(メタデータ) (2024-06-05T13:06:33Z) - Improved Generation of Adversarial Examples Against Safety-aligned LLMs [72.38072942860309]
勾配に基づく手法を用いて生成した敵対的プロンプトは、安全対応のLDMに対して自動ジェイルブレイク攻撃を行う際、優れた性能を示す。
本稿では,この問題に対する新たな視点を探求し,トランスファーベースの攻撃にインスパイアされたイノベーションを活用することで緩和できることを示唆する。
この組み合わせによって生成されたクエリ固有逆接接尾辞の87%がLlama-2-7B-Chatを誘導し、AdvBench上のターゲット文字列と正確に一致する出力を生成することを示した。
論文 参考訳(メタデータ) (2024-05-28T06:10:12Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
大規模言語モデル(LLM)は、幅広い汎用タスクを解く際、印象的なゼロショット能力を示した。
LLMは時間的情報の認識と利用に不足しており、シーケンシャルなデータの理解を必要とするタスクではパフォーマンスが悪い。
LLMに基づくシーケンシャルレコメンデーションのために、歴史的相互作用の中で時間情報を利用する3つのプロンプト戦略を提案する。
論文 参考訳(メタデータ) (2024-05-05T00:21:26Z) - Uncovering Safety Risks of Large Language Models through Concept Activation Vector [13.804245297233454]
大規模言語モデル(LLM)に対する攻撃を誘導する安全概念活性化ベクトル(SCAV)フレームワークについて紹介する。
そこで我々は,攻撃プロンプトと埋め込みレベルの攻撃の両方を生成できるSCAV誘導攻撃法を開発した。
本手法は,トレーニングデータが少なくなるとともに,攻撃成功率と応答品質を著しく向上させる。
論文 参考訳(メタデータ) (2024-04-18T09:46:25Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - Learning to Poison Large Language Models During Instruction Tuning [12.521338629194503]
この研究は、命令チューニングプロセスを利用するのに適した新しいデータ中毒攻撃を設計することで、LLM(Large Language Models)のさらなるセキュリティリスクを特定する。
本稿では,逆方向誘導学習(GBTL)アルゴリズムを提案する。
In-context Learning(ICL)とContinuous Learning(CL)の2つの防衛戦略を提案する。
論文 参考訳(メタデータ) (2024-02-21T01:30:03Z) - Stealthy Attack on Large Language Model based Recommendation [24.51398285321322]
大規模言語モデル (LLM) はレコメンダシステム (RS) の進歩を推進している。
本研究では,レコメンデーションモデルにLSMを導入することで,項目のテキスト内容に重点を置いているため,新たなセキュリティ脆弱性が生じることを明らかにした。
攻撃者は、テストフェーズ中に単にテキストの内容を変更するだけで、アイテムの露出を大幅に向上させることができることを実証する。
論文 参考訳(メタデータ) (2024-02-18T16:51:02Z) - Data Poisoning for In-context Learning [49.77204165250528]
In-context Learning (ICL)は、新しいタスクに適応する革新的な能力として認識されている。
本論文は、ICLのデータ中毒に対する感受性の重大な問題について述べる。
ICLの学習メカニズムを活用するために考案された特殊攻撃フレームワークであるICLPoisonを紹介する。
論文 参考訳(メタデータ) (2024-02-03T14:20:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。