論文の概要: Enhancing Grover's Search Algorithm: A Modified Approach to Increase the Probability of Good States
- arxiv url: http://arxiv.org/abs/2402.00082v4
- Date: Sun, 24 Mar 2024 22:32:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 01:45:48.929159
- Title: Enhancing Grover's Search Algorithm: A Modified Approach to Increase the Probability of Good States
- Title(参考訳): グローバーの探索アルゴリズムの強化:良い状態の確率を高めるための改良されたアプローチ
- Authors: Ismael Abdulrahman,
- Abstract要約: 本稿では,Groverの探索アルゴリズムを改良し,良好な状態を見つける確率の計算を高速化する。
最初のイテレーション中にモデルの微分から数学的に決定された回転位相角を組み込むことを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article introduces an enhancement to the Grover search algorithm to speed up computing the probability of finding good states. It suggests incorporating a rotation phase angle determined mathematically from the derivative of the model during the initial iteration. At each iteration, a new phase angle is computed and used in a rotation gate around y+z axis in the diffusion operator. The computed phase angles are optimized through an adaptive adjustment based on the estimated increasing ratio of the consecutive amplitudes. The findings indicate an average decrease of 28% in the required number of iterations resulting in a faster overall process and fewer number of quantum gates. For large search space, this improvement rises to 29.58%. Given the computational capabilities of the computer utilized for the simulation, the approach is applied to instances with up to 12 qubits or 4096 possible combination of search entries.
- Abstract(参考訳): 本稿では,Groverの探索アルゴリズムを改良し,良好な状態を見つける確率の計算を高速化する。
最初のイテレーション中にモデルの微分から数学的に決定された回転位相角を組み込むことを提案する。
各イテレーションにおいて、拡散演算子のy+z軸周りの回転ゲートに新しい位相角を演算して使用する。
計算された位相角は、連続振幅の推定増加比に基づいて適応調整により最適化される。
その結果、必要なイテレーション数の平均28%が減少し、結果として全体のプロセスが高速化され、量子ゲートの数も減った。
大きな検索スペースでは、この改善は29.58%まで上昇する。
シミュレーションに使用されるコンピュータの計算能力を考えると、最大12キュービットのインスタンスや4096の検索エントリの組み合わせに適用できる。
関連論文リスト
- Approximating Metric Magnitude of Point Sets [4.522729058300309]
計量等級は、多くの望ましい幾何学的性質を持つ点雲の「大きさ」の尺度である。
様々な数学的文脈に適応しており、最近の研究は機械学習と最適化アルゴリズムを強化することを示唆している。
本稿では, 等級問題について検討し, 効率よく近似する方法を示し, 凸最適化問題として扱うことができるが, 部分モジュラ最適化としては適用できないことを示す。
本稿では,高速に収束し精度の高い反復近似アルゴリズムと,計算をより高速に行うサブセット選択法という,2つの新しいアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2024-09-06T17:15:28Z) - Learning-to-Cache: Accelerating Diffusion Transformer via Layer Caching [56.286064975443026]
拡散変圧器内の多数の層をキャッシュ機構で計算することで、モデルパラメータを更新しなくても容易に除去できる。
本稿では,拡散変圧器の動的手法でキャッシングを学習するL2C(Learningto-Cache)を提案する。
実験の結果,L2C は DDIM や DPM-r など,キャッシュベースの従来の手法と同等の推論速度で性能を向上することがわかった。
論文 参考訳(メタデータ) (2024-06-03T18:49:57Z) - Proactively incremental-learning QAOA [9.677961025372115]
逐次学習に基づく量子近似最適化アルゴリズム(QAOA)を提案する。
本手法は, 近似比(AR)とトレーニング時間において, 一般的なQAOAよりも優れた性能を有する。
論文 参考訳(メタデータ) (2023-11-04T02:15:26Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - Ordering for Non-Replacement SGD [7.11967773739707]
我々は,アルゴリズムの非置換形式に対する収束率を改善する順序付けを求める。
我々は,強い凸関数と凸関数のステップサイズを一定かつ小さくするための最適順序付けを開発する。
さらに、注文とミニバッチを組み合わせることで、より複雑なニューラルネットワークにも適用できます。
論文 参考訳(メタデータ) (2023-06-28T00:46:58Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
不均一な問題に対する近似メッセージパッシングアルゴリズム(AMP)を導出する。
特に,情報理論の閾値よりも大きい信号と雑音の比を必要とする既知のアルゴリズムが,ランダムよりも優れた処理を行うための統計的・計算的ギャップの存在を同定する。
論文 参考訳(メタデータ) (2023-02-13T19:57:17Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Improved Rate of First Order Algorithms for Entropic Optimal Transport [2.1485350418225244]
本稿では,エントロピー正規化最適輸送を解くための1次アルゴリズムの最先端性を改善する。
そこで本研究では,差分低減による初期2次元ミラー降下アルゴリズムを提案する。
我々のアルゴリズムは、OTを解くために$widetildeO(n2/epsilon)$の速度を持つ加速された原始双対アルゴリズムを開発するためにより多くの研究を刺激するかもしれない。
論文 参考訳(メタデータ) (2023-01-23T19:13:25Z) - A Fully Single Loop Algorithm for Bilevel Optimization without Hessian
Inverse [121.54116938140754]
両レベル最適化問題に対して,Hessian 逆フリーな完全単一ループアルゴリズムを提案する。
我々のアルゴリズムは$O(epsilon-2)$と収束することを示す。
論文 参考訳(メタデータ) (2021-12-09T02:27:52Z) - Quadratic speedup for simulating Gaussian boson sampling [0.9236074230806577]
本稿では,ガウスボソンサンプリングの古典的シミュレーションのためのアルゴリズムを提案する。
アルゴリズムの複雑さは、検出された光子対の数において指数関数的であり、光子の数ではない。
改良されたループハフニアンアルゴリズムはスーパーコンピュータを必要とせずに純粋状態確率を計算することができることを示す。
論文 参考訳(メタデータ) (2020-10-29T13:53:30Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
本稿では,各ステップごとに1つのデータポイントしか必要としない2つの単一スケールシングルループアルゴリズムを提案する。
本研究の結果は, 同時一次および二重側収束の形で表される。
論文 参考訳(メタデータ) (2020-08-23T20:36:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。