Behind the Myth of Exploration in Policy Gradients
- URL: http://arxiv.org/abs/2402.00162v2
- Date: Tue, 21 Jan 2025 16:57:33 GMT
- Title: Behind the Myth of Exploration in Policy Gradients
- Authors: Adrien Bolland, Gaspard Lambrechts, Damien Ernst,
- Abstract summary: Policy-gradient algorithms are effective reinforcement learning methods for solving control problems.
To compute near-optimal policies, it is essential in practice to include exploration terms in the learning objective.
Two criteria are introduced on the learning objective and two others on its gradient estimates, and are afterwards used to discuss the quality of the policy after optimization.
- Score: 1.75493501156941
- License:
- Abstract: Policy-gradient algorithms are effective reinforcement learning methods for solving control problems. To compute near-optimal policies, it is essential in practice to include exploration terms in the learning objective. Although the effectiveness of these terms is usually justified by an intrinsic need to explore environments, we propose a novel analysis with the lens of numerical optimization. Two criteria are introduced on the learning objective and two others on its stochastic gradient estimates, and are afterwards used to discuss the quality of the policy after optimization. The analysis sheds the light on two separate effects of exploration techniques. First, they make it possible to smooth the learning objective and to eliminate local optima while preserving the global maximum. Second, they modify the gradient estimates, increasing the probability that the stochastic parameter updates eventually provide an optimal policy. These effects are illustrated empirically on exploration strategies based on entropy bonuses, highlighting their limitations and opening avenues for future works in the design and analysis of such strategies.
Related papers
- Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - When Do Off-Policy and On-Policy Policy Gradient Methods Align? [15.7221450531432]
Policy gradient methods are widely adopted reinforcement learning algorithms for tasks with continuous action spaces.
A common way to improve sample efficiency is to modify their objective function to be computable from off-policy samples without importance sampling.
This work studies the difference between the excursion objective and the traditional on-policy objective, which we refer to as the on-off gap.
arXiv Detail & Related papers (2024-02-19T10:42:34Z) - Gradient Informed Proximal Policy Optimization [35.22712034665224]
We introduce a novel policy learning method that integrates analytical gradients from differentiable environments with the Proximal Policy Optimization (PPO) algorithm.
By adaptively modifying the alpha value, we can effectively manage the influence of analytical policy gradients during learning.
Our proposed approach outperforms baseline algorithms in various scenarios, such as function optimization, physics simulations, and traffic control environments.
arXiv Detail & Related papers (2023-12-14T07:50:21Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - Acceleration in Policy Optimization [50.323182853069184]
We work towards a unifying paradigm for accelerating policy optimization methods in reinforcement learning (RL) by integrating foresight in the policy improvement step via optimistic and adaptive updates.
We define optimism as predictive modelling of the future behavior of a policy, and adaptivity as taking immediate and anticipatory corrective actions to mitigate errors from overshooting predictions or delayed responses to change.
We design an optimistic policy gradient algorithm, adaptive via meta-gradient learning, and empirically highlight several design choices pertaining to acceleration, in an illustrative task.
arXiv Detail & Related papers (2023-06-18T15:50:57Z) - A Parametric Class of Approximate Gradient Updates for Policy
Optimization [47.69337420768319]
We develop a unified perspective that re-expresses the underlying updates in terms of a limited choice of gradient form and scaling function.
We obtain novel yet well motivated updates that generalize existing algorithms in a way that can deliver benefits both in terms of convergence speed and final result quality.
arXiv Detail & Related papers (2022-06-17T01:28:38Z) - Bag of Tricks for Natural Policy Gradient Reinforcement Learning [87.54231228860495]
We have implemented and compared strategies that impact performance in natural policy gradient reinforcement learning.
The proposed collection of strategies for performance optimization can improve results by 86% to 181% across the MuJuCo control benchmark.
arXiv Detail & Related papers (2022-01-22T17:44:19Z) - Near Optimal Policy Optimization via REPS [33.992374484681704]
emphrelative entropy policy search (REPS) has demonstrated successful policy learning on a number of simulated and real-world robotic domains.
There exist no guarantees on REPS's performance when using gradient-based solvers.
We introduce a technique that uses emphgenerative access to the underlying decision process to compute parameter updates that maintain favorable convergence to the optimal regularized policy.
arXiv Detail & Related papers (2021-03-17T16:22:59Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
We make the first attempt to study risk-sensitive deep reinforcement learning under the average reward setting with the variance risk criteria.
We propose an actor-critic algorithm that iteratively and efficiently updates the policy, the Lagrange multiplier, and the Fenchel dual variable.
arXiv Detail & Related papers (2020-12-28T05:02:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.