Continuous Treatment Effects with Surrogate Outcomes
- URL: http://arxiv.org/abs/2402.00168v2
- Date: Tue, 21 May 2024 19:07:45 GMT
- Title: Continuous Treatment Effects with Surrogate Outcomes
- Authors: Zhenghao Zeng, David Arbour, Avi Feller, Raghavendra Addanki, Ryan Rossi, Ritwik Sinha, Edward H. Kennedy,
- Abstract summary: We study the role of surrogates in estimating continuous treatment effects.
We propose a doubly robust method to efficiently incorporate surrogates in the analysis.
- Score: 12.548638259932915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many real-world causal inference applications, the primary outcomes (labels) are often partially missing, especially if they are expensive or difficult to collect. If the missingness depends on covariates (i.e., missingness is not completely at random), analyses based on fully observed samples alone may be biased. Incorporating surrogates, which are fully observed post-treatment variables related to the primary outcome, can improve estimation in this case. In this paper, we study the role of surrogates in estimating continuous treatment effects and propose a doubly robust method to efficiently incorporate surrogates in the analysis, which uses both labeled and unlabeled data and does not suffer from the above selection bias problem. Importantly, we establish the asymptotic normality of the proposed estimator and show possible improvements on the variance compared with methods that solely use labeled data. Extensive simulations show our methods enjoy appealing empirical performance.
Related papers
- Assumption-Lean Post-Integrated Inference with Negative Control Outcomes [0.0]
We introduce a robust post-integrated inference (PII) method that adjusts for latent heterogeneity using negative control outcomes.
Our assumption-lean semi inference method extends robustness and generality to projected direct effect estimands that account for mediators, confounders, and moderators.
The proposed doubly robust estimators are consistent and efficient under minimal assumptions, facilitating data-adaptive estimation with machine learning algorithms.
arXiv Detail & Related papers (2024-10-07T12:52:38Z) - Double Machine Learning meets Panel Data -- Promises, Pitfalls, and Potential Solutions [0.0]
Estimating causal effect using machine learning (ML) algorithms can help to relax functional form assumptions if used within appropriate frameworks.
We show how we can adapt machine learning (DML) for panel data in the presence of unobserved heterogeneity.
We also show that the influence of the unobserved heterogeneity on the observed confounders plays a significant role for the performance of most alternative methods.
arXiv Detail & Related papers (2024-09-02T13:59:54Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
We address the problem of integrating data from multiple, possibly biased, observational and interventional studies.
We show that the likelihood of the available data has no local maxima.
We then show how the same approach can address the general case of multiple datasets.
arXiv Detail & Related papers (2023-07-31T11:28:24Z) - The Decaying Missing-at-Random Framework: Doubly Robust Causal Inference
with Partially Labeled Data [10.021381302215062]
In real-world scenarios, data collection limitations often result in partially labeled datasets, leading to difficulties in drawing reliable causal inferences.
Traditional approaches in the semi-parametric (SS) and missing data literature may not adequately handle these complexities, leading to biased estimates.
This framework tackles missing outcomes in high-dimensional settings and accounts for selection bias.
arXiv Detail & Related papers (2023-05-22T07:37:12Z) - To Impute or not to Impute? -- Missing Data in Treatment Effect
Estimation [84.76186111434818]
We identify a new missingness mechanism, which we term mixed confounded missingness (MCM), where some missingness determines treatment selection and other missingness is determined by treatment selection.
We show that naively imputing all data leads to poor performing treatment effects models, as the act of imputation effectively removes information necessary to provide unbiased estimates.
Our solution is selective imputation, where we use insights from MCM to inform precisely which variables should be imputed and which should not.
arXiv Detail & Related papers (2022-02-04T12:08:31Z) - Deconfounded Score Method: Scoring DAGs with Dense Unobserved
Confounding [101.35070661471124]
We show that unobserved confounding leaves a characteristic footprint in the observed data distribution that allows for disentangling spurious and causal effects.
We propose an adjusted score-based causal discovery algorithm that may be implemented with general-purpose solvers and scales to high-dimensional problems.
arXiv Detail & Related papers (2021-03-28T11:07:59Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Weakly-Supervised Cross-Domain Adaptation for Endoscopic Lesions
Segmentation [79.58311369297635]
We propose a new weakly-supervised lesions transfer framework, which can explore transferable domain-invariant knowledge across different datasets.
A Wasserstein quantified transferability framework is developed to highlight widerange transferable contextual dependencies.
A novel self-supervised pseudo label generator is designed to equally provide confident pseudo pixel labels for both hard-to-transfer and easy-to-transfer target samples.
arXiv Detail & Related papers (2020-12-08T02:26:03Z) - Semi-supervised learning and the question of true versus estimated
propensity scores [0.456877715768796]
We propose a simple procedure that reconciles the strong intuition that a known propensity functions should be useful for estimating treatment effects.
Further, simulation studies suggest that direct regression may be preferable to inverse-propensity weight estimators in many circumstances.
arXiv Detail & Related papers (2020-09-14T04:13:12Z) - MissDeepCausal: Causal Inference from Incomplete Data Using Deep Latent
Variable Models [14.173184309520453]
State-of-the-art methods for causal inference don't consider missing values.
Missing data require an adapted unconfoundedness hypothesis.
Latent confounders whose distribution is learned through variational autoencoders adapted to missing values are considered.
arXiv Detail & Related papers (2020-02-25T12:58:07Z) - Learning Overlapping Representations for the Estimation of
Individualized Treatment Effects [97.42686600929211]
Estimating the likely outcome of alternatives from observational data is a challenging problem.
We show that algorithms that learn domain-invariant representations of inputs are often inappropriate.
We develop a deep kernel regression algorithm and posterior regularization framework that substantially outperforms the state-of-the-art on a variety of benchmarks data sets.
arXiv Detail & Related papers (2020-01-14T12:56:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.