論文の概要: Adversarial Mixup Unlearning
- arxiv url: http://arxiv.org/abs/2502.10288v1
- Date: Fri, 14 Feb 2025 16:50:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 14:44:55.803691
- Title: Adversarial Mixup Unlearning
- Title(参考訳): 逆混合学習
- Authors: Zhuoyi Peng, Yixuan Tang, Yi Yang,
- Abstract要約: 合成ミキサアップサンプルを利用して、未学習プロセスの正規化を行う新しい手法を提案する。
私たちのアプローチの核心は、ジェネレータアンリアナーフレームワークであるMixUnlearnです。
本手法は最先端の手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 16.89710766008491
- License:
- Abstract: Machine unlearning is a critical area of research aimed at safeguarding data privacy by enabling the removal of sensitive information from machine learning models. One unique challenge in this field is catastrophic unlearning, where erasing specific data from a well-trained model unintentionally removes essential knowledge, causing the model to deviate significantly from a retrained one. To address this, we introduce a novel approach that regularizes the unlearning process by utilizing synthesized mixup samples, which simulate the data susceptible to catastrophic effects. At the core of our approach is a generator-unlearner framework, MixUnlearn, where a generator adversarially produces challenging mixup examples, and the unlearner effectively forgets target information based on these synthesized data. Specifically, we first introduce a novel contrastive objective to train the generator in an adversarial direction: generating examples that prompt the unlearner to reveal information that should be forgotten, while losing essential knowledge. Then the unlearner, guided by two other contrastive loss terms, processes the synthesized and real data jointly to ensure accurate unlearning without losing critical knowledge, overcoming catastrophic effects. Extensive evaluations across benchmark datasets demonstrate that our method significantly outperforms state-of-the-art approaches, offering a robust solution to machine unlearning. This work not only deepens understanding of unlearning mechanisms but also lays the foundation for effective machine unlearning with mixup augmentation.
- Abstract(参考訳): 機械学習は、機械学習モデルから機密情報の除去を可能にすることによって、データのプライバシ保護を目的とした、重要な研究領域である。
ここでは、十分に訓練されたモデルから特定のデータを消去することで、本質的な知識を意図せずに取り除き、再訓練されたモデルからかなり逸脱する。
そこで本研究では, 破滅的な影響を受けやすいデータをシミュレートする合成混合サンプルを用いて, 未学習プロセスを標準化する手法を提案する。
提案手法のコアとなるのが、MixUnlearnというジェネレータ・アンリーナー・フレームワークで、ジェネレータは、難しいミックスアップの例を逆向きに生成し、Unlearnerは、これらの合成データに基づいてターゲット情報を効果的に忘れる。
具体的には,まず,敵方向にジェネレータを訓練する新たな対照的な目標について紹介する。
そして、他の2つの対照的な損失項によって導かれる未学習者は、合成されたデータと実際のデータを共同で処理し、致命的な知識を失うことなく正確な未学習を確実にし、破滅的な効果を克服する。
ベンチマークデータセットの大規模な評価は、我々の手法が最先端のアプローチを著しく上回り、機械学習に対する堅牢なソリューションを提供することを示している。
この研究は、未学習のメカニズムの理解を深めるだけでなく、ミックスアップ強化による効果的な機械学習の基礎も築き上げている。
関連論文リスト
- Game-Theoretic Machine Unlearning: Mitigating Extra Privacy Leakage [12.737028324709609]
最近の法律では、要求されたデータとその影響を訓練されたモデルから取り除くことが義務付けられている。
本研究では,非学習性能とプライバシ保護の競合関係をシミュレートするゲーム理論マシンアンラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-06T13:47:04Z) - RESTOR: Knowledge Recovery through Machine Unlearning [71.75834077528305]
Webスケールコーパスでトレーニングされた大規模な言語モデルは、望ましくないデータポイントを記憶することができる。
これらのデータポイントを消去する目的で、多くの機械学習アルゴリズムが提案されている。
本稿では,機械学習アルゴリズムが対象データ消去を行う能力を評価する,機械学習のためのRESTORフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-31T20:54:35Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
ニューラルネットワークから特定のデータサンプルの影響を除去する新しい学習機構を提案する。
この目的を達成するために、我々は、ターゲットモデルの重みやアクティベーション値からプライバシーに敏感な情報を排除するための、新しい損失関数を構築した。
本研究の結果は,未学習の有効性とレイテンシ,および主課題の忠実度の観点から,我々のアプローチの優れた性能を示すものである。
論文 参考訳(メタデータ) (2024-07-01T00:20:26Z) - Learn What You Want to Unlearn: Unlearning Inversion Attacks against Machine Unlearning [16.809644622465086]
我々は、機械学習が未学習データの機密内容を漏洩させる範囲を理解するために、最初の調査を行う。
機械学習・アズ・ア・サービス・セッティングの下で、未学習サンプルの特徴とラベル情報を明らかにするアンラーニング・インバージョン・アタックを提案する。
実験結果から,提案攻撃は未学習データのセンシティブな情報を明らかにすることができることが示された。
論文 参考訳(メタデータ) (2024-04-04T06:37:46Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - An Information Theoretic Approach to Machine Unlearning [43.423418819707784]
AIやデータ規則に従うためには、トレーニングされた機械学習モデルからプライベートまたは著作権のある情報を忘れる必要性がますます高まっている。
この研究では、ゼロショットのアンラーニングシナリオに対処し、未学習のアルゴリズムは、トレーニングされたモデルと忘れられるデータだけが与えられたデータを削除できなければならない。
モデルの幾何に基づいて、単純だが原則化されたゼロショットアンラーニング法を導出する。
論文 参考訳(メタデータ) (2024-02-02T13:33:30Z) - Dataset Condensation Driven Machine Unlearning [0.0]
データ規制要件とプライバシ保護機械学習の現在のトレンドは、機械学習の重要性を強調している。
我々は,機械学習のプライバシ,ユーティリティ,効率のバランスをとるために,新しいデータセット凝縮手法と革新的なアンラーニング手法を提案する。
本稿では,機械のアンラーニングを計測するための新しい効果的なアプローチを提案し,その適用方法として,メンバシップ推論とモデル逆転攻撃の防御を提案する。
論文 参考訳(メタデータ) (2024-01-31T21:48:25Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
大規模言語モデル(LLM)は、幅広いテキストデータを事前学習し記憶することで大きな進歩を遂げた。
このプロセスはプライバシー問題やデータ保護規則違反に悩まされる可能性がある。
データ削除後のモデル全体を再トレーニングすることなく、LLMを効率的に更新できる効率的なアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-31T03:35:59Z) - Machine Unlearning of Features and Labels [72.81914952849334]
機械学習モデルにおけるアンラーニングとラベルのファーストシナリオを提案する。
提案手法は,影響関数の概念に基づいて,モデルパラメータのクローズドフォーム更新によるアンラーニングを実現する。
論文 参考訳(メタデータ) (2021-08-26T04:42:24Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
既存の対数学習アプローチは、主にクラスラベルを使用して、誤った予測につながる対数サンプルを生成する。
本稿では,未ラベルデータに対する新たな逆攻撃を提案する。これにより,モデルが摂動データサンプルのインスタンスレベルのアイデンティティを混乱させる。
ラベル付きデータなしで頑健なニューラルネットワークを逆さまにトレーニングするための,自己教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-13T08:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。