論文の概要: Understanding the Expressive Power and Mechanisms of Transformer for Sequence Modeling
- arxiv url: http://arxiv.org/abs/2402.00522v6
- Date: Wed, 30 Oct 2024 08:47:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:24:59.440513
- Title: Understanding the Expressive Power and Mechanisms of Transformer for Sequence Modeling
- Title(参考訳): シーケンスモデリングのための変圧器の表現力と機構の理解
- Authors: Mingze Wang, Weinan E,
- Abstract要約: ドット積自己注意などのトランスフォーマーの異なる成分が表現力に影響を及ぼすメカニズムについて検討する。
本研究では,トランスフォーマーにおける臨界パラメータの役割を明らかにする。
- 参考スコア(独自算出の注目度): 10.246977481606427
- License:
- Abstract: We conduct a systematic study of the approximation properties of Transformer for sequence modeling with long, sparse and complicated memory. We investigate the mechanisms through which different components of Transformer, such as the dot-product self-attention, positional encoding and feed-forward layer, affect its expressive power, and we study their combined effects through establishing explicit approximation rates. Our study reveals the roles of critical parameters in the Transformer, such as the number of layers and the number of attention heads. These theoretical insights are validated experimentally and offer natural suggestions for alternative architectures.
- Abstract(参考訳): 本研究では,長い,スパースな,複雑なメモリを持つシーケンスモデリングのためのTransformerの近似特性を体系的に研究する。
本研究では, ドット積自己注意, 位置符号化, フィードフォワード層などのトランスフォーマーの異なる成分が, その表現力に影響を及ぼすメカニズムについて検討し, 明示的な近似速度を確立することによってそれらの組み合わせの効果について検討する。
本研究では,トランスフォーマーにおける臨界パラメータの役割を明らかにする。
これらの理論的洞察は実験的に検証され、代替アーキテクチャに対する自然な提案を提供する。
関連論文リスト
- Interpreting Affine Recurrence Learning in GPT-style Transformers [54.01174470722201]
インコンテキスト学習により、GPTスタイルのトランスフォーマーは、重みを変更することなく推論中に一般化できる。
本稿では,ICLタスクとしてアフィンの再発を学習し,予測する能力に着目する。
実験的手法と理論的手法の両方を用いてモデルの内部動作を分析する。
論文 参考訳(メタデータ) (2024-10-22T21:30:01Z) - What Does It Mean to Be a Transformer? Insights from a Theoretical Hessian Analysis [8.008567379796666]
Transformerアーキテクチャは、間違いなくディープラーニングに革命をもたらした。
中心となる注意ブロックは、ディープラーニングにおける他のほとんどのアーキテクチャコンポーネントと形式と機能の違いです。
これらの外向きの表現の背後にある根本原因と、それらを管理する正確なメカニズムは、まだ理解されていないままである。
論文 参考訳(メタデータ) (2024-10-14T18:15:02Z) - Skip-Layer Attention: Bridging Abstract and Detailed Dependencies in Transformers [56.264673865476986]
本稿では、Transformerモデルを強化するためのSLA(Skip-Layer Attention)を提案する。
SLAは、高レベルの抽象機能と低レベルの詳細の間の依存関係をキャプチャするモデルの能力を改善します。
我々の実装は、与えられたレイヤ内のクエリが、現在のレイヤと前のレイヤの両方のキーと値とやり取りできるようにすることで、Transformerの機能を拡張します。
論文 参考訳(メタデータ) (2024-06-17T07:24:38Z) - Disentangling and Integrating Relational and Sensory Information in Transformer Architectures [2.5322020135765464]
我々は、個々の物体の性質に関する感覚情報と、物体間の関係に関する関係情報とを区別する。
本稿では,感性情報の流れを指示する感覚的注意機構と,関係情報の流れを指示する新たな関係的注意機構とを特徴とするトランスフォーマーフレームワークのアーキテクチャ拡張を提案する。
論文 参考訳(メタデータ) (2024-05-26T23:52:51Z) - A Mechanistic Analysis of a Transformer Trained on a Symbolic Multi-Step Reasoning Task [14.921790126851008]
合成推論タスクで訓練された変圧器の包括的力学解析について述べる。
モデルがタスクの解決に使用する解釈可能なメカニズムのセットを特定し,相関的および因果的証拠を用いた結果の検証を行った。
論文 参考訳(メタデータ) (2024-02-19T08:04:25Z) - How Do Transformers Learn In-Context Beyond Simple Functions? A Case
Study on Learning with Representations [98.7450564309923]
本稿では、より複雑なシナリオにおける文脈内学習(ICL)の理解を、表現を用いた学習で研究する。
合成文内学習問題を合成構造を用いて構築し、ラベルは複雑なが固定された表現関数によって入力に依存する。
理論的には、そのようなアルゴリズムを軽度な深さと大きさでほぼ実装するトランスフォーマーの存在を示す。
論文 参考訳(メタデータ) (2023-10-16T17:40:49Z) - Transformers are Universal Predictors [21.92580010179886]
言語モデリングにおけるTransformerアーキテクチャの限界を見つけ,情報理論的な意味での普遍的な予測特性を示す。
我々は,トランスフォーマーアーキテクチャの様々なコンポーネントの役割を,特にデータ効率のトレーニングの文脈で理解するために,非漸近データシステムの性能を分析した。
論文 参考訳(メタデータ) (2023-07-15T16:19:37Z) - Approximation Rate of the Transformer Architecture for Sequence Modeling [18.166959969957315]
非線型関係のクラスを考察し、トランスフォーマーのジャクソン型近似率推定を明示するために、複雑性尺度の新たな概念を同定する。
この速度はトランスフォーマーの構造特性を明らかにし、それが近似に最も適しているシーケンシャルな関係のタイプを示唆する。
論文 参考訳(メタデータ) (2023-05-29T10:56:36Z) - XAI for Transformers: Better Explanations through Conservative
Propagation [60.67748036747221]
変換器の勾配は局所的にのみ関数を反映しており、入力特徴の予測への寄与を確実に識別できないことを示す。
我々の提案は、よく確立されたLPP法のトランスフォーマーへの適切な拡張と見なすことができる。
論文 参考訳(メタデータ) (2022-02-15T10:47:11Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z) - Transformers with Competitive Ensembles of Independent Mechanisms [97.93090139318294]
隠れた表現とパラメータを複数のメカニズムに分割し、注意を通して情報を交換する新しいトランスフォーマー層を提案する。
TIM を大規模 BERT モデル、画像変換器、および音声強調について研究し、意味的に意味のある専門化とパフォーマンスの向上の証拠を見つけます。
論文 参考訳(メタデータ) (2021-02-27T21:48:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。