論文の概要: Random Forest-Based Prediction of Stroke Outcome
- arxiv url: http://arxiv.org/abs/2402.00638v1
- Date: Thu, 1 Feb 2024 14:54:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-02 15:00:58.259194
- Title: Random Forest-Based Prediction of Stroke Outcome
- Title(参考訳): ランダム森林によるストロークアウトの予測
- Authors: Carlos Fernandez-Lozano, Pablo Hervella, Virginia Mato-Abad, Manuel
Rodriguez-Yanez, Sonia Suarez-Garaboa, Iria Lopez-Dequidt, Ana Estany-Gestal,
Tomas Sobrino, Francisco Campos, Jose Castillo, Santiago Rodriguez-Yanez and
Ramon Iglesias-Rey
- Abstract要約: 入院後3ヶ月の死亡率と死亡率の予測に機械学習を用いて予測モデルを生成する。
結論として、機械学習RFアルゴリズムは脳卒中患者の死亡率と死亡率の長期予後予測に有効である。
- 参考スコア(独自算出の注目度): 7.090384254446659
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We research into the clinical, biochemical and neuroimaging factors
associated with the outcome of stroke patients to generate a predictive model
using machine learning techniques for prediction of mortality and morbidity 3
months after admission. The dataset consisted of patients with ischemic stroke
(IS) and non-traumatic intracerebral hemorrhage (ICH) admitted to Stroke Unit
of a European Tertiary Hospital prospectively registered. We identified the
main variables for machine learning Random Forest (RF), generating a predictive
model that can estimate patient mortality/morbidity. In conclusion, machine
learning algorithms RF can be effectively used in stroke patients for long-term
outcome prediction of mortality and morbidity.
- Abstract(参考訳): 脳卒中患者の予後に関連する臨床・生化学的・神経画像化因子について検討し, 入院3カ月後の死亡率と死亡率の予測に機械学習を用いた予測モデルを構築した。
本データセットは虚血性脳梗塞 (IS) と非外傷性脳内出血 (ICH) をともなう欧州第三次病院の脳卒中単位 (Stroke Unit) を前向きに登録した。
我々は,患者の死亡・死亡を推定できる予測モデルを生成する機械学習ランダムフォレスト(RF)の主な変数を特定した。
結論として、機械学習アルゴリズムRFは脳卒中患者の死亡率と死亡率の長期予後予測に有効である。
関連論文リスト
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Automatic prediction of mortality in patients with mental illness using
electronic health records [0.5957022371135096]
本報告では,精神疾患患者の死亡率を予測するための永続的課題について述べる。
MIMIC-IIIデータセットから精神疾患の診断データを抽出した。
4つの機械学習アルゴリズムを使用し、ランダムフォレストとサポートベクターマシンのモデルが他のモデルよりも優れていたことを示す結果が得られた。
論文 参考訳(メタデータ) (2023-10-18T17:21:01Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Neurological Prognostication of Post-Cardiac-Arrest Coma Patients Using
EEG Data: A Dynamic Survival Analysis Framework with Competing Risks [4.487368901635044]
脳波データを用いた心停止後コマトース患者の神経学的予後の枠組みを提案する。
我々のフレームワークは、患者レベルの累積頻度関数を推定する形で競合するリスクをサポートする動的生存分析モデルを使用する。
我々は,922人の実際のデータセット上で競合するリスクをサポートする3つの既存動的生存分析モデルをベンチマークすることで,我々の枠組みを実証する。
論文 参考訳(メタデータ) (2023-08-17T03:46:23Z) - Prediction of Post-Operative Renal and Pulmonary Complications Using
Transformers [69.81176740997175]
術後急性腎不全,肺合併症,院内死亡の予測におけるトランスフォーマーモデルの有用性について検討した。
以上の結果から,トランスフォーマーモデルにより術後合併症の予測や従来の機械学習モデルよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-06-01T14:08:05Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
既存の結果予測モデルは、頻繁なポジティブな結果の低いリコールに悩まされる。
我々は、死亡率とICUの受け入れによって表される逆さを自動的に予測する、高度にスケーリング可能な、堅牢な機械学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-18T15:56:28Z) - Parkland Trauma Index of Mortality (PTIM): Real-time Predictive Model
for PolyTrauma Patients [0.0]
Parkland Trauma Index of Mortality (PTIM)は、電子カルテ(EMR)データを用いて死亡率を予測する機械学習アルゴリズムである。
モデルは毎時更新され、外傷に対する患者の生理的反応とともに進化する。
入院早期のポリトラウマ患者の臨床的意思決定に有用なツールかもしれない。
論文 参考訳(メタデータ) (2020-10-07T20:34:03Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z) - Individualized Prediction of COVID-19 Adverse outcomes with MLHO [9.197411456718708]
我々は、反復的な特徴とアルゴリズムの選択を利用して健康状態を予測するエンドツーエンドの機械学習フレームワークを開発した。
入院前患者の健康状態と人口統計を表わす特徴として,約600点を用いた4つの有害な結果のモデル化を行った。
以上の結果から, 人口統計学的変数は, 新型コロナウイルス感染後の副作用の予測因子として重要であるが, 過去の臨床記録の組み入れは, 信頼性の高い予測モデルに欠かせないことが示唆された。
論文 参考訳(メタデータ) (2020-08-10T02:44:52Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
本稿では,電子カルテから心血管イベントを予測するための注意機構を備えたマルチタスク・リカレントニューラルネットワークを提案する。
提案手法は、NHS Foundation Trustの5年間のデータを用いて、標準的な臨床リスク予測器(QRISK)と機械学習の代替手段と比較される。
論文 参考訳(メタデータ) (2020-07-16T17:43:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。