論文の概要: A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data
- arxiv url: http://arxiv.org/abs/2011.09361v2
- Date: Fri, 11 Jun 2021 12:10:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 05:14:39.736501
- Title: A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data
- Title(参考訳): 電子健康記録データから短期・長期入院成果を予測するための知識蒸留アンサンブルフレームワーク
- Authors: Zina M Ibrahim, Daniel Bean, Thomas Searle, Honghan Wu, Anthony Shek,
Zeljko Kraljevic, James Galloway, Sam Norton, James T Teo, Richard JB Dobson
- Abstract要約: 既存の結果予測モデルは、頻繁なポジティブな結果の低いリコールに悩まされる。
我々は、死亡率とICUの受け入れによって表される逆さを自動的に予測する、高度にスケーリング可能な、堅牢な機械学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 5.844828229178025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to perform accurate prognosis of patients is crucial for
proactive clinical decision making, informed resource management and
personalised care. Existing outcome prediction models suffer from a low recall
of infrequent positive outcomes. We present a highly-scalable and robust
machine learning framework to automatically predict adversity represented by
mortality and ICU admission from time-series vital signs and laboratory results
obtained within the first 24 hours of hospital admission. The stacked platform
comprises two components: a) an unsupervised LSTM Autoencoder that learns an
optimal representation of the time-series, using it to differentiate the less
frequent patterns which conclude with an adverse event from the majority
patterns that do not, and b) a gradient boosting model, which relies on the
constructed representation to refine prediction, incorporating static features
of demographics, admission details and clinical summaries. The model is used to
assess a patient's risk of adversity over time and provides visual
justifications of its prediction based on the patient's static features and
dynamic signals. Results of three case studies for predicting mortality and ICU
admission show that the model outperforms all existing outcome prediction
models, achieving PR-AUC of 0.891 (95$%$ CI: 0.878 - 0.969) in predicting
mortality in ICU and general ward settings and 0.908 (95$%$ CI: 0.870-0.935) in
predicting ICU admission.
- Abstract(参考訳): 患者の正確な予後を示す能力は、積極的な臨床意思決定、情報資源管理、パーソナライズドケアに不可欠である。
既存の結果予測モデルは、頻繁な結果の低いリコールに悩まされる。
病院入所後24時間以内に得られた経時的生命徴候および検査結果から死亡率およびicu入所率に代表される逆行性を自動的に予測する、高度にスケーラブルでロバストな機械学習フレームワークを提案する。
プラットフォームは2つのコンポーネントから構成される。
a) 時系列の最適な表現を学習する教師なしのlstmオートエンコーダで、それを用いて、有害な事象で終わる頻度の低いパターンとそうでない多数派パターンとを区別する。
ロ 人口統計、入院状況及び臨床概要の静的特徴を組み込んだ予測を洗練するために構築された表現に依存する勾配促進モデル
このモデルは、患者の逆境のリスクを時間とともに評価し、患者の静的特徴と動的信号に基づいて、その予測の視覚的正当性を提供する。
死亡予測とICU入院の3つのケーススタディの結果,ICU入院予測ではPR-AUCが0.891 (95$%$ CI: 0.878 - 0.969) ,ICU入院予測では0.908 (95$%$ CI: 0.870-0.935) であった。
関連論文リスト
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Advanced Meta-Ensemble Machine Learning Models for Early and Accurate Sepsis Prediction to Improve Patient Outcomes [0.0]
本報告では, 全身性炎症性反応症候群, 早期警戒スコア, クイックシークエンシャル臓器不全評価など, 従来の敗血症スクリーニングツールの限界について検討する。
本稿では,機械学習技術 - ランダムフォレスト, エクストリームグラディエントブースティング, 決定木モデル - を用いて, セプシスの発症を予測することを提案する。
本研究は,これらのモデルについて,精度,精度,リコール,F1スコア,受信器動作特性曲線の下での領域といった重要な指標を用いて,個別かつ組み合わせたメタアンサンブルアプローチで評価する。
論文 参考訳(メタデータ) (2024-07-11T00:51:32Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Assessing the impact of emergency department short stay units using
length-of-stay prediction and discrete event simulation [1.0822676139724565]
救急部門から一般内科に入院した患者に対して,入院期間を予測する意思決定支援システムの構築を目指す。
我々は探索的データ分析を行い、最高の予測性能をもたらす属性を識別するために特徴選択手法を用いる。
論文 参考訳(メタデータ) (2023-08-04T22:26:02Z) - Mortality Prediction with Adaptive Feature Importance Recalibration for
Peritoneal Dialysis Patients: a deep-learning-based study on a real-world
longitudinal follow-up dataset [19.7915762858399]
終末期腎疾患(ESRD)に対する腹膜透析(PD)は最も広く用いられている生命維持療法の1つである
本稿では,リアルタイム,個別化,解釈可能な死亡予測モデル - AICare のためのディープラーニングモデルを開発することを目的とする。
本研究は656 PD患者13,091 人の臨床経過と人口統計データを収集した。
論文 参考訳(メタデータ) (2023-01-17T13:17:54Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Individualized Prediction of COVID-19 Adverse outcomes with MLHO [9.197411456718708]
我々は、反復的な特徴とアルゴリズムの選択を利用して健康状態を予測するエンドツーエンドの機械学習フレームワークを開発した。
入院前患者の健康状態と人口統計を表わす特徴として,約600点を用いた4つの有害な結果のモデル化を行った。
以上の結果から, 人口統計学的変数は, 新型コロナウイルス感染後の副作用の予測因子として重要であるが, 過去の臨床記録の組み入れは, 信頼性の高い予測モデルに欠かせないことが示唆された。
論文 参考訳(メタデータ) (2020-08-10T02:44:52Z) - A Physiology-Driven Computational Model for Post-Cardiac Arrest Outcome
Prediction [0.7930054475711718]
本研究の目的は,CA後の結果を予測する計算モデルを構築することである。
我々は、生理的時系列(PTS)データの統合と機械学習(ML)分類器の訓練によりモデル性能を向上させることができると仮定した。
その結果, MLモデルによるCA後予測モデルの有効性が証明され, PTSが短期成績確率を符号化した後のごく初期段階に記録されることが示唆された。
論文 参考訳(メタデータ) (2020-02-09T07:53:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。