LLMs learn governing principles of dynamical systems, revealing an in-context neural scaling law
- URL: http://arxiv.org/abs/2402.00795v4
- Date: Wed, 09 Oct 2024 16:02:13 GMT
- Title: LLMs learn governing principles of dynamical systems, revealing an in-context neural scaling law
- Authors: Toni J. B. Liu, Nicolas Boullé, Raphaël Sarfati, Christopher J. Earls,
- Abstract summary: A language model trained primarily on texts achieves accurate predictions of dynamical system time series without fine-tuning or prompt engineering.
We present a flexible and efficient algorithm for extracting probability density functions of multi-digit numbers directly from LLMs.
- Score: 3.281128493853064
- License:
- Abstract: Pretrained large language models (LLMs) are surprisingly effective at performing zero-shot tasks, including time-series forecasting. However, understanding the mechanisms behind such capabilities remains highly challenging due to the complexity of the models. We study LLMs' ability to extrapolate the behavior of dynamical systems whose evolution is governed by principles of physical interest. Our results show that LLaMA 2, a language model trained primarily on texts, achieves accurate predictions of dynamical system time series without fine-tuning or prompt engineering. Moreover, the accuracy of the learned physical rules increases with the length of the input context window, revealing an in-context version of neural scaling law. Along the way, we present a flexible and efficient algorithm for extracting probability density functions of multi-digit numbers directly from LLMs.
Related papers
- Can a Large Language Model Learn Matrix Functions In Context? [3.7478782183628634]
Large Language Models (LLMs) have demonstrated the ability to solve complex tasks through In-Context Learning (ICL)
This paper explores the capacity of LLMs to solve non-linear numerical computations, with specific emphasis on functions of the Singular Value Decomposition.
arXiv Detail & Related papers (2024-11-24T00:33:43Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - FLUID-LLM: Learning Computational Fluid Dynamics with Spatiotemporal-aware Large Language Models [15.964726158869777]
Large language models (LLMs) have shown remarkable pattern recognition and reasoning abilities.
We introduce FLUID-LLM, a novel framework combining pre-trained LLMs with pre-aware encoding to predict unsteady fluid dynamics.
Our results demonstrate that FLUID-LLM effectively integratestemporal information into pre-trained LLMs, enhancing CFD task performance.
arXiv Detail & Related papers (2024-06-06T20:55:40Z) - Verbalized Machine Learning: Revisiting Machine Learning with Language Models [63.10391314749408]
We introduce the framework of verbalized machine learning (VML)
VML constrains the parameter space to be human-interpretable natural language.
We empirically verify the effectiveness of VML, and hope that VML can serve as a stepping stone to stronger interpretability.
arXiv Detail & Related papers (2024-06-06T17:59:56Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - In-Context Language Learning: Architectures and Algorithms [73.93205821154605]
We study ICL through the lens of a new family of model problems we term in context language learning (ICLL)
We evaluate a diverse set of neural sequence models on regular ICLL tasks.
arXiv Detail & Related papers (2024-01-23T18:59:21Z) - In-Context Learning Dynamics with Random Binary Sequences [16.645695664776433]
We propose a framework that enables us to analyze in-context learning dynamics.
Inspired by the cognitive science of human perception, we use random binary sequences as context.
In the latest GPT-3.5+ models, we find emergent abilities to generate seemingly random numbers and learn basic formal languages.
arXiv Detail & Related papers (2023-10-26T17:54:52Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z) - Graph Neural Prompting with Large Language Models [32.97391910476073]
Graph Neural Prompting (GNP) is a novel plug-and-play method to assist pre-trained language models in learning beneficial knowledge from knowledge graphs.
Extensive experiments on multiple datasets demonstrate the superiority of GNP on both commonsense and biomedical reasoning tasks.
arXiv Detail & Related papers (2023-09-27T06:33:29Z) - A Survey of Large Language Models [81.06947636926638]
Language modeling has been widely studied for language understanding and generation in the past two decades.
Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora.
To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size.
arXiv Detail & Related papers (2023-03-31T17:28:46Z) - Differentially Private Decoding in Large Language Models [14.221692239892207]
We propose a simple, easy to interpret, and computationally lightweight perturbation mechanism to be applied to an already trained model at the decoding stage.
Our perturbation mechanism is model-agnostic and can be used in conjunction with any Large Language Model.
arXiv Detail & Related papers (2022-05-26T20:50:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.