論文の概要: NCoder -- A Quantum Field Theory approach to encoding data
- arxiv url: http://arxiv.org/abs/2402.00944v1
- Date: Thu, 1 Feb 2024 19:00:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-05 18:04:46.768582
- Title: NCoder -- A Quantum Field Theory approach to encoding data
- Title(参考訳): NCoder -- データ符号化のための量子場理論アプローチ
- Authors: David S. Berman, Marc S. Klinger, Alexander G. Stapleton
- Abstract要約: 我々は、量子場理論(QFT)にインスパイアされたAIの解釈に新しいアプローチを提案し、これをNCoderと呼ぶ。
NCoderは、潜伏層が$n$-point相関関数のサブセットとして指定された修正されたオートエンコーダニューラルネットワークである。
- 参考スコア(独自算出の注目度): 49.1574468325115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we present a novel approach to interpretable AI inspired by
Quantum Field Theory (QFT) which we call the NCoder. The NCoder is a modified
autoencoder neural network whose latent layer is prescribed to be a subset of
$n$-point correlation functions. Regarding images as draws from a lattice field
theory, this architecture mimics the task of perturbatively constructing the
effective action of the theory order by order in an expansion using Feynman
diagrams. Alternatively, the NCoder may be regarded as simulating the procedure
of statistical inference whereby high dimensional data is first summarized in
terms of several lower dimensional summary statistics (here the $n$-point
correlation functions), and subsequent out-of-sample data is generated by
inferring the data generating distribution from these statistics. In this way
the NCoder suggests a fascinating correspondence between perturbative
renormalizability and the sufficiency of models. We demonstrate the efficacy of
the NCoder by applying it to the generation of MNIST images, and find that
generated images can be correctly classified using only information from the
first three $n$-point functions of the image distribution.
- Abstract(参考訳): 本稿では、量子場理論(qft)に触発された解釈可能なaiに対する新しいアプローチについて述べる。
NCoderは、潜伏層が$n$-point相関関数のサブセットとして指定された修正されたオートエンコーダニューラルネットワークである。
格子場理論から引き出された画像について、このアーキテクチャはファインマン図を用いた拡張において、理論の順序の効果的な作用を順序で摂動的に構築するタスクを模倣する。
あるいは、NCoderは、高次元データをいくつかの低次元の要約統計量(以下、$n$-point相関関数)でまず要約し、その後、これらの統計量からデータ生成分布を推測してサンプル外データを生成するような統計的推論の手順をシミュレートできる。
このようにして、NCoderは摂動的再正規化可能性とモデルの十分性の間の魅力的な対応を提案する。
我々は、MNIST画像の生成にNCoderを適用して、NCoderの有効性を実証し、生成した画像は、画像分布の最初の3$n$-point関数の情報のみを用いて正しく分類できることを示した。
関連論文リスト
- Learning local discrete features in explainable-by-design convolutional neural networks [0.0]
本稿では,側方抑制機構に基づくCNN(Design-by-Design Convolutional Neural Network)を提案する。
このモデルは、残留または高密度のスキップ接続を持つ高精度CNNである予測器で構成されている。
観測を収集し,直接確率を計算することにより,隣接するレベルのモチーフ間の因果関係を説明することができる。
論文 参考訳(メタデータ) (2024-10-31T18:39:41Z) - Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
拡散確率モデル(Denoising Diffusion Probabilistic Models, DDPM)は、例外的な品質を持つ同時代の生成モデルである。
本研究では,ベイズ式による確率推定過程を分解するために,専用設計を用いたリンク予測のための新しい生成モデルを構築した。
提案手法は,(1)再トレーニングを伴わないデータセット間の転送可能性,(2)限られたトレーニングデータに対する有望な一般化,(3)グラフ敵攻撃に対する堅牢性など,多くの利点を示す。
論文 参考訳(メタデータ) (2024-09-13T02:23:55Z) - Neural Tangent Kernels Motivate Graph Neural Networks with
Cross-Covariance Graphs [94.44374472696272]
グラフニューラルネットワーク(GNN)の文脈におけるNTKとアライメントについて検討する。
その結果、2層GNNのアライメントの最適性に関する理論的保証が確立された。
これらの保証は、入力と出力データの相互共分散の関数であるグラフシフト演算子によって特徴づけられる。
論文 参考訳(メタデータ) (2023-10-16T19:54:21Z) - Deep Networks as Denoising Algorithms: Sample-Efficient Learning of
Diffusion Models in High-Dimensional Graphical Models [22.353510613540564]
生成モデルにおけるディープニューラルネットワークによるスコア関数の近似効率について検討する。
楽譜関数はしばしば変分推論法を用いてグラフィカルモデルでよく近似される。
深層ニューラルネットワークによってスコア関数が学習されるとき,拡散に基づく生成モデルに縛られた効率的なサンプル複雑性を提供する。
論文 参考訳(メタデータ) (2023-09-20T15:51:10Z) - Conditionally Strongly Log-Concave Generative Models [33.79337785731899]
本稿では, 強い対数対数分布を持つ条件付き確率分布の積にデータ分布を分解する条件付き強対数対数モデルを提案する。
これは効率的なパラメータ推定とサンプリングアルゴリズムにつながり、理論的な保証があるが、データ分布はグローバルなログコンケーブではない。
数値的な結果は、$varphi4$モデルや弱レンズ収束写像のような物理場に対して、以前の研究よりも高分解能で示される。
論文 参考訳(メタデータ) (2023-05-31T20:59:47Z) - Disentanglement via Latent Quantization [60.37109712033694]
本研究では,組織化された潜在空間からの符号化と復号化に向けた帰納的バイアスを構築する。
本稿では,基本データレコーダ (vanilla autoencoder) と潜時再構成 (InfoGAN) 生成モデルの両方に追加することで,このアプローチの広範な適用性を実証する。
論文 参考訳(メタデータ) (2023-05-28T06:30:29Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet Pre-trained Deep Neural Network (DNN)は、効果的な画像品質評価(IQA)モデルを構築するための顕著な転送性を示す。
我々は,事前学習DNN機能のみに基づく新しいフル参照IQA(FR-IQA)モデルを開発した。
5つの標準IQAデータセット上で,提案した品質モデルの優位性を示すため,包括的実験を行った。
論文 参考訳(メタデータ) (2022-11-09T14:57:27Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
本稿では,グラフ全体を部分的に観測されたマルコフ確率場としてモデル化するEPFGNN(Explicit Pairwise Factorized Graph Neural Network)を提案する。
出力-出力関係をモデル化するための明示的なペアワイズ要素を含み、入力-出力関係をモデル化するためにGNNバックボーンを使用する。
本研究では,グラフ上での半教師付きノード分類の性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2021-07-27T19:47:53Z) - Neuralizing Efficient Higher-order Belief Propagation [19.436520792345064]
より優れたノードとグラフ表現を学習するためのアプローチを組み合わせることを提案する。
我々は高次PGMに対する効率的な近似積ループ的信念伝搬推定アルゴリズムを導出する。
我々のモデルは実際に高次情報をキャプチャし、分子データセットにおける最先端の$k$のグラフニューラルネットワークよりも大幅に優れています。
論文 参考訳(メタデータ) (2020-10-19T07:51:31Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
グラフ自動エンコーダ(GAE)モデルは、半教師付きグラフ畳み込みネットワーク(GCN)に基づく
我々は、グラフクラスタリングのための特定のGAEベースのモデルを設計し、その理論、すなわち、埋め込みグラフオートエンコーダ(EGAE)と整合する。
EGAEは1つのエンコーダと2つのデコーダで構成される。
論文 参考訳(メタデータ) (2020-02-20T09:53:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。