Investigating Recurrent Transformers with Dynamic Halt
- URL: http://arxiv.org/abs/2402.00976v3
- Date: Tue, 3 Sep 2024 02:35:52 GMT
- Title: Investigating Recurrent Transformers with Dynamic Halt
- Authors: Jishnu Ray Chowdhury, Cornelia Caragea,
- Abstract summary: We study the inductive biases of two major approaches to augmenting Transformers with a recurrent mechanism.
We propose and investigate novel ways to extend and combine the methods.
- Score: 64.862738244735
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we comprehensively study the inductive biases of two major approaches to augmenting Transformers with a recurrent mechanism: (1) the approach of incorporating a depth-wise recurrence similar to Universal Transformers; and (2) the approach of incorporating a chunk-wise temporal recurrence like Temporal Latent Bottleneck. Furthermore, we propose and investigate novel ways to extend and combine the above methods - for example, we propose a global mean-based dynamic halting mechanism for Universal Transformers and an augmentation of Temporal Latent Bottleneck with elements from Universal Transformer. We compare the models and probe their inductive biases in several diagnostic tasks, such as Long Range Arena (LRA), flip-flop language modeling, ListOps, and Logical Inference. The code is released in: https://github.com/JRC1995/InvestigatingRecurrentTransformers/tree/main
Related papers
- Interpreting Affine Recurrence Learning in GPT-style Transformers [54.01174470722201]
In-context learning allows GPT-style transformers to generalize during inference without modifying their weights.
This paper focuses specifically on their ability to learn and predict affine recurrences as an ICL task.
We analyze the model's internal operations using both empirical and theoretical approaches.
arXiv Detail & Related papers (2024-10-22T21:30:01Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Self-attention mechanism in Transformer architecture requires positional embeddings to encode temporal order in time series prediction.
We argue that this reliance on positional embeddings restricts the Transformer's ability to effectively represent temporal sequences.
We present a model integrating PRE with a standard Transformer encoder, demonstrating state-of-the-art performance on various real-world datasets.
arXiv Detail & Related papers (2024-08-20T01:56:07Z) - Beyond Scaling Laws: Understanding Transformer Performance with Associative Memory [11.3128832831327]
Increasing the size of a Transformer model does not always lead to enhanced performance.
improved generalization ability occurs as the model memorizes the training samples.
We present a theoretical framework that sheds light on the memorization process and performance dynamics of transformer-based language models.
arXiv Detail & Related papers (2024-05-14T15:48:36Z) - Repeat After Me: Transformers are Better than State Space Models at Copying [53.47717661441142]
We show that while generalized state space models are promising in terms of inference-time efficiency, they are limited compared to transformer models on tasks that require copying from the input context.
arXiv Detail & Related papers (2024-02-01T21:44:11Z) - Your Transformer May Not be as Powerful as You Expect [88.11364619182773]
We mathematically analyze the power of RPE-based Transformers regarding whether the model is capable of approximating any continuous sequence-to-sequence functions.
We present a negative result by showing there exist continuous sequence-to-sequence functions that RPE-based Transformers cannot approximate no matter how deep and wide the neural network is.
We develop a novel attention module, called Universal RPE-based (URPE) Attention, which satisfies the conditions.
arXiv Detail & Related papers (2022-05-26T14:51:30Z) - Masked Language Modeling for Proteins via Linearly Scalable Long-Context
Transformers [42.93754828584075]
We present a new Transformer architecture, Performer, based on Fast Attention Via Orthogonal Random features (FAVOR)
Our mechanism scales linearly rather than quadratically in the number of tokens in the sequence, is characterized by sub-quadratic space complexity and does not incorporate any sparsity pattern priors.
It provides strong theoretical guarantees: unbiased estimation of the attention matrix and uniform convergence.
arXiv Detail & Related papers (2020-06-05T17:09:16Z) - Variational Transformers for Diverse Response Generation [71.53159402053392]
Variational Transformer (VT) is a variational self-attentive feed-forward sequence model.
VT combines the parallelizability and global receptive field computation of the Transformer with the variational nature of the CVAE.
We explore two types of VT: 1) modeling the discourse-level diversity with a global latent variable; and 2) augmenting the Transformer decoder with a sequence of finegrained latent variables.
arXiv Detail & Related papers (2020-03-28T07:48:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.