論文の概要: Enhanced fringe-to-phase framework using deep learning
- arxiv url: http://arxiv.org/abs/2402.00977v1
- Date: Thu, 1 Feb 2024 19:47:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-05 17:51:43.992357
- Title: Enhanced fringe-to-phase framework using deep learning
- Title(参考訳): 深層学習によるフィンセント・ツー・フェイズフレームワークの強化
- Authors: Won-Hoe Kim, Bongjoong Kim, Hyung-Gun Chi, Jae-Sang Hyun
- Abstract要約: 本稿では、2つのフランジ画像を絶対位相に変換する対称核融合ネットワークであるSFNetを紹介する。
出力信頼性を向上させるため,本フレームワークでは,入力として使用するものと異なる周波数のフリンジ画像から情報を取り込むことにより,洗練された位相を予測する。
- 参考スコア(独自算出の注目度): 2.243491254050456
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In Fringe Projection Profilometry (FPP), achieving robust and accurate 3D
reconstruction with a limited number of fringe patterns remains a challenge in
structured light 3D imaging. Conventional methods require a set of fringe
images, but using only one or two patterns complicates phase recovery and
unwrapping. In this study, we introduce SFNet, a symmetric fusion network that
transforms two fringe images into an absolute phase. To enhance output
reliability, Our framework predicts refined phases by incorporating information
from fringe images of a different frequency than those used as input. This
allows us to achieve high accuracy with just two images. Comparative
experiments and ablation studies validate the effectiveness of our proposed
method. The dataset and code are publicly accessible on our project page
https://wonhoe-kim.github.io/SFNet.
- Abstract(参考訳): フランジプロジェクションプロファイロメトリー(FPP)では、光3D画像の構造化において、限られた縞パターンで頑健で正確な3D再構成を実現することが課題である。
従来の方法はフリンジ画像のセットを必要とするが、1つまたは2つのパターンのみを使用すると位相回復とアンラッピングが複雑になる。
本研究では、2つのフランジ画像を絶対位相に変換する対称核融合ネットワークであるSFNetを紹介する。
出力信頼性を高めるために,入力として使用するものと異なる周波数のフリンジ画像からの情報を取り込むことにより,洗練された位相を予測する。
これにより、たった2つの画像で高い精度を実現できます。
比較実験とアブレーション実験により,提案手法の有効性が検証された。
データセットとコードは、当社のプロジェクトページ https://wonhoe-kim.github.io/SFNetで公開されています。
関連論文リスト
- Double-Shot 3D Shape Measurement with a Dual-Branch Network [14.749887303860717]
我々は、異なる構造光(SL)変調を処理するために、デュアルブランチ畳み込みニューラルネットワーク(CNN)-トランスフォーマーネットワーク(PDCNet)を提案する。
PDCNet内では、Transformerブランチを使用してフリンジイメージのグローバルな認識をキャプチャし、CNNブランチはスペックルイメージのローカル詳細を収集するように設計されている。
提案手法は, 自己生成データセット上で高精度な結果が得られる一方で, フランジオーダーの曖昧さを低減できることを示す。
論文 参考訳(メタデータ) (2024-07-19T10:49:26Z) - OrientDream: Streamlining Text-to-3D Generation with Explicit Orientation Control [66.03885917320189]
OrientDreamは、テキストプロンプトから効率よくマルチビューで一貫した3D生成のためのカメラ指向条件付きフレームワークである。
本戦略は,2次元テキスト・画像拡散モジュールの事前学習におけるカメラ配向条件付き機能の実装を強調する。
提案手法は,一貫したマルチビュー特性を持つ高品質なNeRFモデルを生成するだけでなく,既存手法よりも最適化速度が大幅に向上することを示した。
論文 参考訳(メタデータ) (2024-06-14T13:16:18Z) - Misalignment-Robust Frequency Distribution Loss for Image Transformation [51.0462138717502]
本稿では,画像強調や超解像といった深層学習に基づく画像変換手法における共通の課題に対処することを目的とする。
本稿では、周波数領域内における分布距離を計算するための、新しいシンプルな周波数分布損失(FDL)を提案する。
本手法は,周波数領域におけるグローバル情報の思慮深い活用により,トレーニング制約として実証的に有効であることが実証された。
論文 参考訳(メタデータ) (2024-02-28T09:27:41Z) - Improving Misaligned Multi-modality Image Fusion with One-stage
Progressive Dense Registration [67.23451452670282]
多モード画像間の相違は、画像融合の課題を引き起こす。
マルチスケールプログレッシブ・センス・レジストレーション方式を提案する。
このスキームは、一段階最適化のみで粗大な登録を行う。
論文 参考訳(メタデータ) (2023-08-22T03:46:24Z) - Searching a Compact Architecture for Robust Multi-Exposure Image Fusion [55.37210629454589]
2つの大きなスタブリングブロックは、画素の不一致や非効率な推論など、開発を妨げる。
本研究では,高機能なマルチ露光画像融合のための自己アライメントとディテールリプレクションモジュールを取り入れたアーキテクチャ検索に基づくパラダイムを提案する。
提案手法は様々な競争方式より優れており、一般的なシナリオではPSNRが3.19%向上し、不整合シナリオでは23.5%向上した。
論文 参考訳(メタデータ) (2023-05-20T17:01:52Z) - Meta-Auxiliary Network for 3D GAN Inversion [18.777352198191004]
本稿では,新たに開発された3D GANをジェネレータとして利用しながら,新しいメタ補助フレームワークを提案する。
最初の段階では、オフザシェルフインバージョン技術を用いて、入力画像を編集可能な潜在コードに変換する。
補助的ネットワークは、与えられた画像を入力としてジェネレータパラメータを洗練し、畳み込み層の重み付けとボリュームレンダリングのサンプリング位置のオフセットを予測する。
第2段階では、入力された画像に補助ネットワークを高速に適応させるメタラーニングを行い、その後、メタラーニングされた補助ネットワークを介して最終再構成画像を合成する。
論文 参考訳(メタデータ) (2023-05-18T11:26:27Z) - Self-supervised phase unwrapping in fringe projection profilometry [0.0]
単カメラ遠近射影プロファイロメトリーのための新しい自己監督型位相アンラッピング法を提案する。
訓練されたネットワークは、64周期の1フェーズマップから絶対縁順を検索し、深さ精度でDF-TPUアプローチをオーバーパフォーマンスすることができる。
実験により, 提案手法が実際の動きのぼやけ, 孤立物体, 低反射率, 位相不連続の場面で有効であることを示す。
論文 参考訳(メタデータ) (2023-02-13T14:16:34Z) - FOF: Learning Fourier Occupancy Field for Monocular Real-time Human
Reconstruction [73.85709132666626]
パラメトリックモデル、ボクセルグリッド、メッシュ、暗黙のニューラル表現といった既存の表現は、高品質な結果とリアルタイムなスピードを同時に達成することが困難である。
本稿では,モノクラーリアルタイムかつ高精度な人体再構成のための,新しい強力で効率的で柔軟な3次元表現であるFourier Occupancy Field (FOF)を提案する。
FOFは、2D畳み込みニューラルネットワークと互換性があり、3D画像と2D画像のギャップを埋めることのできるマルチチャネル画像として保存することができる。
論文 参考訳(メタデータ) (2022-06-05T14:45:02Z) - TFill: Image Completion via a Transformer-Based Architecture [69.62228639870114]
画像補完を無方向性シーケンス対シーケンス予測タスクとして扱うことを提案する。
トークン表現には,小かつ重複しないRFを持つ制限型CNNを用いる。
第2フェーズでは、可視領域と発生領域の外観整合性を向上させるために、新しい注意認識層(aal)を導入する。
論文 参考訳(メタデータ) (2021-04-02T01:42:01Z) - Robust 3D Self-portraits in Seconds [37.943161014260674]
単一のRGBDカメラを用いた3次元自撮り画像の高能率化手法を提案する。
提案手法は,最先端の手法と比較して,より堅牢で効率的な3次元自画像を実現する。
論文 参考訳(メタデータ) (2020-04-06T08:02:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。