論文の概要: FedShift: Tackling Dual Heterogeneity Problem of Federated Learning via
Weight Shift Aggregation
- arxiv url: http://arxiv.org/abs/2402.01070v1
- Date: Fri, 2 Feb 2024 00:03:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-05 17:29:55.368252
- Title: FedShift: Tackling Dual Heterogeneity Problem of Federated Learning via
Weight Shift Aggregation
- Title(参考訳): FedShift: 重み付け集約によるフェデレーション学習の二重不均一性問題に対処する
- Authors: Jungwon Seo, Chunming Rong, Minhoe Kim
- Abstract要約: Federated Learning(FL)は、データプライバシの保護に重点を置いて、マシンラーニングモデルをトレーニングするための魅力的な方法を提供する。
FLにおいて認識された課題であるシステム不均一性と統計的不均一性の存在は、クライアントハードウェア、ネットワーク、データセット分布の多様性から生じる。
本稿では,2つのヘテロジニアスシナリオにおいて,トレーニング速度とモデルの精度を両立させる新しいアルゴリズムであるFedShiftを紹介する。
- 参考スコア(独自算出の注目度): 6.3842184099869295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) offers a compelling method for training machine
learning models with a focus on preserving data privacy. The presence of system
heterogeneity and statistical heterogeneity, recognized challenges in FL,
arises from the diversity of client hardware, network, and dataset
distribution. This diversity can critically affect the training pace and the
performance of models. While many studies address either system or statistical
heterogeneity by introducing communication-efficient or stable convergence
algorithms, addressing these challenges in isolation often leads to compromises
due to unaddressed heterogeneity. In response, this paper introduces FedShift,
a novel algorithm designed to enhance both the training speed and the models'
accuracy in a dual heterogeneity scenario. Our solution can improve client
engagement through quantization and mitigate the adverse effects on performance
typically associated with quantization by employing a shifting technique. This
technique has proven to enhance accuracy by an average of 3.9% in diverse
heterogeneity environments.
- Abstract(参考訳): Federated Learning (FL)は、データプライバシの保護に重点を置いた機械学習モデルをトレーニングするための魅力的な方法を提供する。
FLにおいて認識された課題であるシステム不均一性と統計的不均一性の存在は、クライアントハードウェア、ネットワーク、データセット分布の多様性から生じる。
この多様性は、モデルのトレーニングペースとパフォーマンスに重大な影響を与えます。
多くの研究は、通信効率または安定収束アルゴリズムを導入することによって、システムまたは統計的不均一性に対処するが、これらの課題を分離することで、不規則な不均一性による妥協につながることが多い。
そこで本研究では,2つの異種性シナリオにおけるトレーニング速度とモデルの精度を両立させる新しいアルゴリズムであるFedShiftを紹介する。
このソリューションは、量子化によってクライアントのエンゲージメントを向上させることができ、シフト技術を用いることで、量子化に伴うパフォーマンスの悪影響を軽減できる。
この手法は様々な異種環境において平均3.9%の精度で精度を高めることが証明されている。
関連論文リスト
- Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
本稿では,公平なFLモデルを訓練するためのOTA-FFL(Over-the-air Fair Federated Learning Algorithm)を提案する。
OTA-FFLの公正性とロバストな性能に対する優位性を示す実験を行った。
論文 参考訳(メタデータ) (2025-01-06T21:16:51Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
同期フェデレーションラーニング(FL)は、協調エッジラーニングの一般的なパラダイムである。
一部のデバイスは計算資源が限られており、様々な可用性があるため、FLレイテンシはストラグラーに非常に敏感である。
本稿では,NNの最適化手法をバックプロパゲーションにより活用し,グローバルモデルを階層的に更新するストラグラー対応層対応学習(SALF)を提案する。
論文 参考訳(メタデータ) (2024-03-27T09:14:36Z) - AEDFL: Efficient Asynchronous Decentralized Federated Learning with
Heterogeneous Devices [61.66943750584406]
異種環境におけるAEDFL(Asynchronous Efficient Decentralized FL framework)を提案する。
まず、FL収束を改善するための効率的なモデル集約手法を用いた非同期FLシステムモデルを提案する。
次に,より優れた精度を実現するために,動的安定化を考慮したモデル更新手法を提案する。
第3に,通信コストと計算コストを大幅に削減する適応スパース学習法を提案する。
論文 参考訳(メタデータ) (2023-12-18T05:18:17Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - Scheduling and Aggregation Design for Asynchronous Federated Learning
over Wireless Networks [56.91063444859008]
Federated Learning(FL)は、デバイス上でのトレーニングとサーバベースのアグリゲーションを組み合わせた、協調的な機械学習フレームワークである。
FLシステムにおけるストラグラー問題に対処するために,周期的アグリゲーションを用いた非同期FL設計を提案する。
年齢認識の集約重み付け設計は,非同期FL設定における学習性能を著しく向上させることができることを示す。
論文 参考訳(メタデータ) (2022-12-14T17:33:01Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
本稿では,モデル量子化による統合学習(FL)における無線通信と計算効率の向上について考察する。
提案したビット幅FL方式では,エッジデバイスは局所FLモデルパラメータの量子化バージョンを調整し,コーディネートサーバに送信し,それらを量子化されたグローバルモデルに集約し,デバイスを同期させる。
FLトレーニングプロセスはマルコフ決定プロセスとして記述でき、反復よりも行動選択を最適化するためのモデルベース強化学習(RL)手法を提案する。
論文 参考訳(メタデータ) (2022-09-21T08:52:51Z) - AdaBest: Minimizing Client Drift in Federated Learning via Adaptive Bias
Estimation [12.62716075696359]
フェデレートラーニング(FL)では、多くのクライアントやデバイスが協力して、データを共有せずにモデルをトレーニングします。
このドリフトを推定・除去するために、近年FL最適化に分散低減技術が組み込まれている。
本稿では,クライアント間のドリフトを正確に推定する適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-04-27T20:04:24Z) - Optimizing the Communication-Accuracy Trade-off in Federated Learning
with Rate-Distortion Theory [1.5771347525430772]
連合学習における重要なボトルネックは、クライアントデバイスから中央サーバにモデル更新を送信する際のネットワーク通信コストである。
本手法は,その経験的分布を考慮し,量子化された更新を適切な普遍コードで符号化する。
量子化は誤差をもたらすので、平均的な全勾配と歪みにおける所望のトレードオフを最適化することで量子化レベルを選択する。
論文 参考訳(メタデータ) (2022-01-07T20:17:33Z) - 1-Bit Compressive Sensing for Efficient Federated Learning Over the Air [32.14738452396869]
本稿では,1ビットセンシング(CS)をアナログアグリゲーション送信に組み込んだ,空気上の通信効率の高い学習手法を開発し,解析する。
スケーラブルコンピューティングでは,大規模ネットワークに適した効率的な実装を開発する。
シミュレーションの結果,提案した1ビットCSベースのFLは理想的な場合と同等の性能を示した。
論文 参考訳(メタデータ) (2021-03-30T03:50:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。