論文の概要: Non-Federated Multi-Task Split Learning for Heterogeneous Sources
- arxiv url: http://arxiv.org/abs/2406.00150v1
- Date: Fri, 31 May 2024 19:27:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 08:23:47.958058
- Title: Non-Federated Multi-Task Split Learning for Heterogeneous Sources
- Title(参考訳): 不均一音源に対する非フェデレーションマルチタスクスプリット学習
- Authors: Yilin Zheng, Atilla Eryilmaz,
- Abstract要約: 異種データソースのマルチタスク学習を効率的に行うための新しいアーキテクチャと方法論を提案する。
MTSLは,サーバとクライアントの学習率を調整することで,高速収束を実現することができることを示す。
- 参考スコア(独自算出の注目度): 17.47679789733922
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the development of edge networks and mobile computing, the need to serve heterogeneous data sources at the network edge requires the design of new distributed machine learning mechanisms. As a prevalent approach, Federated Learning (FL) employs parameter-sharing and gradient-averaging between clients and a server. Despite its many favorable qualities, such as convergence and data-privacy guarantees, it is well-known that classic FL fails to address the challenge of data heterogeneity and computation heterogeneity across clients. Most existing works that aim to accommodate such sources of heterogeneity stay within the FL operation paradigm, with modifications to overcome the negative effect of heterogeneous data. In this work, as an alternative paradigm, we propose a Multi-Task Split Learning (MTSL) framework, which combines the advantages of Split Learning (SL) with the flexibility of distributed network architectures. In contrast to the FL counterpart, in this paradigm, heterogeneity is not an obstacle to overcome, but a useful property to take advantage of. As such, this work aims to introduce a new architecture and methodology to perform multi-task learning for heterogeneous data sources efficiently, with the hope of encouraging the community to further explore the potential advantages we reveal. To support this promise, we first show through theoretical analysis that MTSL can achieve fast convergence by tuning the learning rate of the server and clients. Then, we compare the performance of MTSL with existing multi-task FL methods numerically on several image classification datasets to show that MTSL has advantages over FL in training speed, communication cost, and robustness to heterogeneous data.
- Abstract(参考訳): エッジネットワークとモバイルコンピューティングの開発により、ネットワークエッジにおける異種データソースの提供の必要性は、新しい分散機械学習メカニズムの設計を必要とする。
一般的なアプローチとして、フェデレートラーニング(FL)では、クライアントとサーバ間のパラメータ共有と勾配回避を採用しています。
コンバージェンスやデータプライバシ保証といった多くの特質にもかかわらず、古典的なFLがクライアント間のデータ不均一性と計算の不均一性という課題に対処できないことはよく知られている。
このような異種性の源に対応することを目的とした既存の研究はFL演算パラダイムに留まり、異種データの負の効果を克服する修正がなされている。
本稿では,分散ネットワークアーキテクチャの柔軟性と分割学習(SL)の利点を組み合わせたマルチタスク分割学習(MTSL)フレームワークを提案する。
FLとは対照的に、このパラダイムでは、不均一性は克服する障害ではなく、活用する上で有用な性質である。
そこで本研究は,異種データソースのマルチタスク学習を効率的に行うための新しいアーキテクチャと方法論を導入することを目的としている。
MTSLがサーバとクライアントの学習率を調整して高速収束を実現できることを示す。
そして, MTSLと既存のマルチタスクFL法の性能を比較し, トレーニング速度, 通信コスト, 異種データに対する堅牢性において, MTSLがFLよりも優れていることを示す。
関連論文リスト
- FedPref: Federated Learning Across Heterogeneous Multi-objective Preferences [2.519319150166215]
Federated Learning(FL)は、トレーニングデータが分散デバイスによって所有され、共有できない設定のために開発された分散機械学習戦略である。
FLの現実的な設定への応用は、参加者間の不均一性に関連する新たな課題をもたらします。
この設定でパーソナライズされたFLを促進するために設計された最初のアルゴリズムであるFedPrefを提案する。
論文 参考訳(メタデータ) (2025-01-23T12:12:59Z) - Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
本稿では,公平なFLモデルを訓練するためのOTA-FFL(Over-the-air Fair Federated Learning Algorithm)を提案する。
OTA-FFLの公正性とロバストな性能に対する優位性を示す実験を行った。
論文 参考訳(メタデータ) (2025-01-06T21:16:51Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH (Federated Learning Across Simultaneous Heterogeneities) は軽量かつ柔軟なクライアント選択アルゴリズムである。
ヘテロジニティの幅広い情報源の下で、最先端のFLフレームワークよりも優れています。
最先端のベースラインよりも大幅に、一貫性のある改善を実現している。
論文 参考訳(メタデータ) (2024-02-13T20:04:39Z) - FedConv: Enhancing Convolutional Neural Networks for Handling Data
Heterogeneity in Federated Learning [34.37155882617201]
フェデレーション・ラーニング(FL)は機械学習における新たなパラダイムであり、共有モデルは複数のデバイスからのデータを使って協調的に学習される。
活性化関数や正規化層などの異なるアーキテクチャ要素が異種FLの性能に与える影響を系統的に検討する。
以上の結果から,戦略的アーキテクチャ変更により,純粋なCNNは,VTと一致するか,あるいは超えるようなロバスト性を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-10-06T17:57:50Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - Effectively Heterogeneous Federated Learning: A Pairing and Split
Learning Based Approach [16.093068118849246]
本稿では,クライアントと異なる計算資源をペアリングする,新しい分割フェデレーション学習(SFL)フレームワークを提案する。
グラフエッジ選択問題として,学習遅延の最適化を再構築し,グレディアルゴリズムを提案する。
シミュレーションの結果,提案手法はFLトレーニング速度を大幅に向上し,高い性能を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-08-26T11:10:54Z) - FedDAT: An Approach for Foundation Model Finetuning in Multi-Modal
Heterogeneous Federated Learning [37.96957782129352]
我々はFederated Dual-Aadapter Teacher(Fed DAT)と呼ばれる異種マルチモーダル基礎モデルに適した微調整フレームワークを提案する。
Fed DATは、クライアントのローカル更新を規則化し、MKD(Mutual Knowledge Distillation)を効率的な知識伝達に適用することで、データの均一性に対処する。
その有効性を示すために、異なる種類のデータ不均一性を持つ4つの多モードFLベンチマークについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-08-21T21:57:01Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
多くの現実世界では、多数のラベル付きサンプルの収集は不可能です。
少ないショット学習はこの問題に対処するための主要なアプローチであり、目的は限られた数のサンプルの存在下で新しいカテゴリに迅速に適応することです。
幾何学的変換の一般集合に対する等分散と不変性を同時に強制する新しい訓練機構を提案する。
論文 参考訳(メタデータ) (2021-03-01T21:14:33Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。