FedShift: Robust Federated Learning Aggregation Scheme in Resource Constrained Environment via Weight Shifting
- URL: http://arxiv.org/abs/2402.01070v2
- Date: Tue, 18 Feb 2025 09:15:33 GMT
- Title: FedShift: Robust Federated Learning Aggregation Scheme in Resource Constrained Environment via Weight Shifting
- Authors: Jungwon Seo, Minhoe Kim, Chunming Rong,
- Abstract summary: Federated Learning (FL) commonly relies on a central server to coordinate training across distributed clients.<n>Clients may employ different quantization levels based on their hardware or network constraints, necessitating a mixed-precision aggregation process at the server.<n>We propose FedShift, a novel aggregation methodology designed to mitigate performance degradation in FL scenarios with mixed quantization levels.
- Score: 5.680416078423551
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) commonly relies on a central server to coordinate training across distributed clients. While effective, this paradigm suffers from significant communication overhead, impacting overall training efficiency. To mitigate this, prior work has explored compression techniques such as quantization. However, in heterogeneous FL settings, clients may employ different quantization levels based on their hardware or network constraints, necessitating a mixed-precision aggregation process at the server. This introduces additional challenges, exacerbating client drift and leading to performance degradation. In this work, we propose FedShift, a novel aggregation methodology designed to mitigate performance degradation in FL scenarios with mixed quantization levels. FedShift employs a statistical matching mechanism based on weight shifting to align mixed-precision models, thereby reducing model divergence and addressing quantization-induced bias. Our approach functions as an add-on to existing FL optimization algorithms, enhancing their robustness and improving convergence. Empirical results demonstrate that FedShift effectively mitigates the negative impact of mixed-precision aggregation, yielding superior performance across various FL benchmarks.
Related papers
- Decentralized Nonconvex Composite Federated Learning with Gradient Tracking and Momentum [78.27945336558987]
Decentralized server (DFL) eliminates reliance on client-client architecture.
Non-smooth regularization is often incorporated into machine learning tasks.
We propose a novel novel DNCFL algorithm to solve these problems.
arXiv Detail & Related papers (2025-04-17T08:32:25Z) - Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
We propose an over-the-air fair federated learning algorithm (OTA-FFL) to train fair FL models.
Experiments demonstrate the superiority of OTA-FFL in achieving fairness and robust performance.
arXiv Detail & Related papers (2025-01-06T21:16:51Z) - Addressing Heterogeneity in Federated Learning: Challenges and Solutions for a Shared Production Environment [1.2499537119440245]
Federated learning (FL) has emerged as a promising approach to training machine learning models across decentralized data sources.
This paper provides a comprehensive overview of data heterogeneity in FL within the context of manufacturing.
We discuss the impact of these types of heterogeneity on model training and review current methodologies for mitigating their adverse effects.
arXiv Detail & Related papers (2024-08-18T17:49:44Z) - Navigating High-Degree Heterogeneity: Federated Learning in Aerial and Space Networks [8.766411351797885]
Federated learning offers a compelling solution to the challenges of networking and data privacy within aerial and space networks.
In this paper, we explore the influence of heterogeneity on class imbalance, which diminishes performance in ASNs-based federated learning.
arXiv Detail & Related papers (2024-06-25T21:57:26Z) - Non-Federated Multi-Task Split Learning for Heterogeneous Sources [17.47679789733922]
We introduce a new architecture and methodology to perform multi-task learning for heterogeneous data sources efficiently.
We show through theoretical analysis that MTSL can achieve fast convergence by tuning the learning rate of the server and clients.
arXiv Detail & Related papers (2024-05-31T19:27:03Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
Synchronous federated learning (FL) is a popular paradigm for collaborative edge learning.
As some of the devices may have limited computational resources and varying availability, FL latency is highly sensitive to stragglers.
We propose straggler-aware layer-wise federated learning (SALF) that leverages the optimization procedure of NNs via backpropagation to update the global model in a layer-wise fashion.
arXiv Detail & Related papers (2024-03-27T09:14:36Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - AEDFL: Efficient Asynchronous Decentralized Federated Learning with
Heterogeneous Devices [61.66943750584406]
We propose an Asynchronous Efficient Decentralized FL framework, i.e., AEDFL, in heterogeneous environments.
First, we propose an asynchronous FL system model with an efficient model aggregation method for improving the FL convergence.
Second, we propose a dynamic staleness-aware model update approach to achieve superior accuracy.
Third, we propose an adaptive sparse training method to reduce communication and computation costs without significant accuracy degradation.
arXiv Detail & Related papers (2023-12-18T05:18:17Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Multi-Task Model Personalization for Federated Supervised SVM in
Heterogeneous Networks [10.169907307499916]
Federated systems enable collaborative training on highly heterogeneous data through model personalization.
To accelerate the learning procedure for diverse participants in a multi-task federated setting, more efficient and robust methods need to be developed.
In this paper, we design an efficient iterative distributed method based on the alternating direction method of multipliers (ADMM) for support vector machines (SVMs)
The proposed method utilizes efficient computations and model exchange in a network of heterogeneous nodes and allows personalization of the learning model in the presence of non-i.i.d. data.
arXiv Detail & Related papers (2023-03-17T21:36:01Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
This paper considers improving wireless communication and computation efficiency in federated learning (FL) via model quantization.
In the proposed bitwidth FL scheme, edge devices train and transmit quantized versions of their local FL model parameters to a coordinating server, which aggregates them into a quantized global model and synchronizes the devices.
We show that the FL training process can be described as a Markov decision process and propose a model-based reinforcement learning (RL) method to optimize action selection over iterations.
arXiv Detail & Related papers (2022-09-21T08:52:51Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - AdaBest: Minimizing Client Drift in Federated Learning via Adaptive Bias
Estimation [12.62716075696359]
In Federated Learning (FL), a number of clients or devices collaborate to train a model without sharing their data.
In order to estimate and therefore remove this drift, variance reduction techniques have been incorporated into FL optimization recently.
We propose an adaptive algorithm that accurately estimates drift across clients.
arXiv Detail & Related papers (2022-04-27T20:04:24Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Optimizing the Communication-Accuracy Trade-off in Federated Learning
with Rate-Distortion Theory [1.5771347525430772]
A significant bottleneck in federated learning is the network communication cost of sending model updates from client devices to the central server.
Our method encodes quantized updates with an appropriate universal code, taking into account their empirical distribution.
Because quantization introduces error, we select quantization levels by optimizing for the desired trade-off in average total gradient and distortion.
arXiv Detail & Related papers (2022-01-07T20:17:33Z) - 1-Bit Compressive Sensing for Efficient Federated Learning Over the Air [32.14738452396869]
This paper develops and analyzes a communication-efficient scheme for learning (FL) over the air, which incorporates 1-bit sensing (CS) into analog aggregation transmissions.
For scalable computing, we develop an efficient implementation that is suitable for large-scale networks.
Simulation results show that our proposed 1-bit CS based FL over the air achieves comparable performance to the ideal case.
arXiv Detail & Related papers (2021-03-30T03:50:31Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.