Enhanced Urban Region Profiling with Adversarial Contrastive Learning
- URL: http://arxiv.org/abs/2402.01163v2
- Date: Sat, 27 Jul 2024 13:45:50 GMT
- Title: Enhanced Urban Region Profiling with Adversarial Contrastive Learning
- Authors: Weiliang Chen, Qianqian Ren, Lin Pan, Shengxi Fu, Jinbao Li,
- Abstract summary: EUPAC is a novel framework that enhances the robustness of urban region embeddings.
Our model generates region embeddings that preserve intra-region and inter-region dependencies.
Experiments on real-world datasets demonstrate the superiority of our model over state-of-the-art methods.
- Score: 7.62909500335772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Urban region profiling is influential for smart cities and sustainable development. However, extracting fine-grained semantics and generating robust urban region embeddings from noisy and incomplete urban data is challenging. In response, we present EUPAC (Enhanced Urban Region Profiling with Adversarial Contrastive Learning), a novel framework that enhances the robustness of urban region embeddings through joint optimization of attentive supervised and adversarial contrastive modules. Specifically, region heterogeneous graphs containing human mobility data, point of interest information, and geographic neighborhood details for each region are fed into our model, which generates region embeddings that preserve intra-region and inter-region dependencies through graph convolutional networks and multi-head attention. Meanwhile, we introduce spatially learnable augmentation to generate positive samples that are semantically similar and spatially close to the anchor, preparing for subsequent contrastive learning. Furthermore, we propose an adversarial training method to construct an effective pretext task by generating strong positive pairs and mining hard negative pairs for the region embeddings. Finally, we jointly optimize attentive supervised and adversarial contrastive learning to encourage the model to capture the high-level semantics of region embeddings while ignoring the noisy and irrelevant details. Extensive experiments on real-world datasets demonstrate the superiority of our model over state-of-the-art methods.
Related papers
- Evaluating Time Series Models for Urban Wastewater Management: Predictive Performance, Model Complexity and Resilience [1.0499611180329806]
Climate change increases the frequency of extreme rainfall, placing a significant strain on urban infrastructures, especially Combined Sewer Systems (CSS)
Overflows from overburdened CSS release untreated wastewater into surface waters, posing environmental and public health risks.
Traditional physics-based models are effective, but they are costly to maintain and difficult to adapt to evolving system dynamics.
Machine Learning approaches offer cost-efficient alternatives with greater adaptability.
arXiv Detail & Related papers (2025-04-24T11:52:13Z) - Unveiling Hidden Vulnerabilities in Digital Human Generation via Adversarial Attacks [14.356235723912564]
We propose a novel framework designed to generate adversarial examples capable of effectively compromising any digital human generation model.
Our approach introduces a textbf Dual Heterogeneous Noise Generator (DHNG), which leverages Variational Autoencoders (VAE) and ControlNet to produce diverse, targeted noise tailored to the original image features.
Extensive experiments demonstrate TBA's superiority, achieving a remarkable 41.0% increase in estimation error, with an average improvement of approximately 17.0%.
arXiv Detail & Related papers (2025-04-24T11:42:10Z) - Towards Robust Stability Prediction in Smart Grids: GAN-based Approach under Data Constraints and Adversarial Challenges [53.2306792009435]
We introduce a novel framework to detect instability in smart grids by employing only stable data.
It relies on a Generative Adversarial Network (GAN) where the generator is trained to create instability data that are used along with stable data to train the discriminator.
Our solution, tested on a dataset composed of real-world stable and unstable samples, achieve accuracy up to 97.5% in predicting grid stability and up to 98.9% in detecting adversarial attacks.
arXiv Detail & Related papers (2025-01-27T20:48:25Z) - Collaborative Imputation of Urban Time Series through Cross-city Meta-learning [54.438991949772145]
We propose a novel collaborative imputation paradigm leveraging meta-learned implicit neural representations (INRs)
We then introduce a cross-city collaborative learning scheme through model-agnostic meta learning.
Experiments on a diverse urban dataset from 20 global cities demonstrate our model's superior imputation performance and generalizability.
arXiv Detail & Related papers (2025-01-20T07:12:40Z) - Adversarial Robustness through Dynamic Ensemble Learning [0.0]
Adversarial attacks pose a significant threat to the reliability of pre-trained language models (PLMs)
This paper presents Adversarial Robustness through Dynamic Ensemble Learning (ARDEL), a novel scheme designed to enhance the robustness of PLMs against such attacks.
arXiv Detail & Related papers (2024-12-20T05:36:19Z) - Multimodal Contrastive Learning of Urban Space Representations from POI Data [2.695321027513952]
CaLLiPer (Contrastive Language-Location Pre-training) is a representation learning model that embeds continuous urban spaces into vector representations.
We validate CaLLiPer's effectiveness by applying it to learning urban space representations in London, UK.
arXiv Detail & Related papers (2024-11-09T16:24:07Z) - FedNE: Surrogate-Assisted Federated Neighbor Embedding for Dimensionality Reduction [47.336599393600046]
textscFedNE is a novel approach that integrates the textscFedAvg framework with the contrastive NE technique.
We conduct comprehensive experiments on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-09-17T19:23:24Z) - Balancing Security and Accuracy: A Novel Federated Learning Approach for Cyberattack Detection in Blockchain Networks [10.25938198121523]
This paper presents a novel Collaborative Cyberattack Detection (CCD) system aimed at enhancing the security of blockchain-based data-sharing networks.
We explore the effects of various noise types on key performance metrics, including attack detection accuracy, deep learning model convergence time, and the overall runtime of global model generation.
Our findings reveal the intricate trade-offs between ensuring data privacy and maintaining system performance, offering valuable insights into optimizing these parameters for diverse CCD environments.
arXiv Detail & Related papers (2024-09-08T04:38:07Z) - Explainable Hierarchical Urban Representation Learning for Commuting Flow Prediction [1.5156879440024378]
Commuting flow prediction is an essential task for municipal operations in the real world.
We develop a heterogeneous graph-based model to generate meaningful region embeddings for predicting different types of inter-level OD flows.
Our proposed model outperforms existing models in terms of a uniform urban structure.
arXiv Detail & Related papers (2024-08-27T03:30:01Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.
Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.
However, the deployment of these agents in physical environments presents significant safety challenges.
This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Exploring the Interplay of Interpretability and Robustness in Deep Neural Networks: A Saliency-guided Approach [3.962831477787584]
Adversarial attacks pose a significant challenge to deploying deep learning models in safety-critical applications.
Maintaining model robustness while ensuring interpretability is vital for fostering trust and comprehension in these models.
This study investigates the impact of Saliency-guided Training on model robustness.
arXiv Detail & Related papers (2024-05-10T07:21:03Z) - Region-aware Distribution Contrast: A Novel Approach to Multi-Task Partially Supervised Learning [50.88504784466931]
Multi-task dense prediction involves semantic segmentation, depth estimation, and surface normal estimation.
Existing solutions typically rely on learning global image representations for global cross-task image matching.
Our proposal involves modeling region-wise representations using Gaussian Distributions.
arXiv Detail & Related papers (2024-03-15T12:41:30Z) - RegionGPT: Towards Region Understanding Vision Language Model [88.42271128373191]
RegionGPT (short as RGPT) is a novel framework designed for complex region-level captioning and understanding.
We develop an automated region caption data generation pipeline, enriching the training set with detailed region-level captions.
We demonstrate that a universal RGPT model can be effectively applied and significantly enhancing performance across a range of region-level tasks.
arXiv Detail & Related papers (2024-03-04T18:58:08Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNs are vulnerable to the model stealing attack, a nefarious endeavor geared towards duplicating the target model via query permissions.
We introduce three model stealing attacks to adapt to different actual scenarios.
arXiv Detail & Related papers (2023-12-18T05:42:31Z) - Attentive Graph Enhanced Region Representation Learning [7.4106801792345705]
Representing urban regions accurately and comprehensively is essential for various urban planning and analysis tasks.
We propose the Attentive Graph Enhanced Region Representation Learning (ATGRL) model, which aims to capture comprehensive dependencies from multiple graphs and learn rich semantic representations of urban regions.
arXiv Detail & Related papers (2023-07-06T16:38:43Z) - Multi-Temporal Relationship Inference in Urban Areas [75.86026742632528]
Finding temporal relationships among locations can benefit a bunch of urban applications, such as dynamic offline advertising and smart public transport planning.
We propose a solution to Trial with a graph learning scheme, which includes a spatially evolving graph neural network (SEENet)
SEConv performs the intra-time aggregation and inter-time propagation to capture the multifaceted spatially evolving contexts from the view of location message passing.
SE-SSL designs time-aware self-supervised learning tasks in a global-local manner with additional evolving constraint to enhance the location representation learning and further handle the relationship sparsity.
arXiv Detail & Related papers (2023-06-15T07:48:32Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Point-Level Region Contrast for Object Detection Pre-Training [147.47349344401806]
We present point-level region contrast, a self-supervised pre-training approach for the task of object detection.
Our approach performs contrastive learning by directly sampling individual point pairs from different regions.
Compared to an aggregated representation per region, our approach is more robust to the change in input region quality.
arXiv Detail & Related papers (2022-02-09T18:56:41Z) - Urban Region Profiling via A Multi-Graph Representation Learning
Framework [0.0]
We propose a multi-graph representative learning framework, called Region2Vec, for urban region profiling.
Experiments on real-world datasets show that Region2Vec can be employed in three applications and outperforms all state-of-the-art baselines.
arXiv Detail & Related papers (2022-02-04T11:05:37Z) - Learning Neighborhood Representation from Multi-Modal Multi-Graph:
Image, Text, Mobility Graph and Beyond [20.014906526266795]
We propose a novel approach to integrate multi-modal geotagged inputs as either node or edge features of a multi-graph.
Specifically, we use street view images and POI features to characterize neighborhoods (nodes) and use human mobility to characterize the relationship between neighborhoods (directed edges)
The embedding we trained outperforms the ones using only unimodal data as regional inputs.
arXiv Detail & Related papers (2021-05-06T07:44:05Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.