論文の概要: MIQCQP reformulation of the ReLU neural networks Lipschitz constant
estimation problem
- arxiv url: http://arxiv.org/abs/2402.01199v1
- Date: Fri, 2 Feb 2024 07:55:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-05 16:26:19.215610
- Title: MIQCQP reformulation of the ReLU neural networks Lipschitz constant
estimation problem
- Title(参考訳): MIQCQPによるReLUニューラルネットワークのリプシッツ定数推定問題の改善
- Authors: Mohammed Sbihi (ENAC), Sophie Jan (IMT), Nicolas Couellan (IMT, ENAC)
- Abstract要約: ニューラルネットワークのリプシッツ推定問題に対する2次拘束型MIP定式化を提案する。
これらの問題の解はリプシッツ定数の下限と上限を与える。
我々は、それらが正確なリプシッツ定数と一致するときの条件を詳述する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is well established that to ensure or certify the robustness of a neural
network, its Lipschitz constant plays a prominent role. However, its
calculation is NP-hard. In this note, by taking into account activation regions
at each layer as new constraints, we propose new quadratically constrained MIP
formulations for the neural network Lipschitz estimation problem. The solutions
of these problems give lower bounds and upper bounds of the Lipschitz constant
and we detail conditions when they coincide with the exact Lipschitz constant.
- Abstract(参考訳): ニューラルネットワークのロバスト性を保証するか、証明するために、そのリプシッツ定数が顕著な役割を果たすことはよく確立されている。
しかし、その計算はNPハードである。
本稿では,各層における活性化領域を新たな制約として考慮し,ニューラルネットワークのリプシッツ推定問題に対する2次拘束型MIP定式化を提案する。
これらの問題の解はリプシッツ定数の下限と上限を与え、それらが正確なリプシッツ定数と一致するときの条件を詳述する。
関連論文リスト
- Novel Quadratic Constraints for Extending LipSDP beyond Slope-Restricted
Activations [52.031701581294804]
ニューラルネットワークのリプシッツ境界は、高い時間保存保証で計算できる。
このギャップを埋めて,リプシッツを傾斜制限活性化関数を超えて拡張する。
提案した解析は一般であり、$ell$ および $ell_infty$ Lipschitz 境界を推定するための統一的なアプローチを提供する。
論文 参考訳(メタデータ) (2024-01-25T09:23:31Z) - Chordal Sparsity for Lipschitz Constant Estimation of Deep Neural
Networks [77.82638674792292]
ニューラルネットワークのリプシッツ定数は、画像分類の堅牢性、コントローラ設計の安全性、トレーニングデータを超えた一般化性を保証する。
リプシッツ定数の計算はNPハードであるため、リプシッツ定数を推定する手法はスケーラビリティと精度のトレードオフをナビゲートする必要がある。
本研究では,LipSDPと呼ばれる半定値プログラミング手法のスケーラビリティフロンティアを大幅に推し進め,精度の損失をゼロにする。
論文 参考訳(メタデータ) (2022-04-02T11:57:52Z) - Training Certifiably Robust Neural Networks with Efficient Local
Lipschitz Bounds [99.23098204458336]
認証された堅牢性は、安全クリティカルなアプリケーションにおいて、ディープニューラルネットワークにとって望ましい性質である。
提案手法は,MNISTおよびTinyNetデータセットにおける最先端の手法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2021-11-02T06:44:10Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
暗黙のニューラルネットワークは、精度の向上とメモリ消費の大幅な削減を示す。
彼らは不利な姿勢と収束の不安定さに悩まされる。
本論文は,ニューラルネットワークを高機能かつ頑健に設計するための新しい枠組みを提供する。
論文 参考訳(メタデータ) (2021-06-06T18:05:02Z) - LipBaB: Computing exact Lipschitz constant of ReLU networks [0.0]
LipBaBは、ディープニューラルネットワークのローカルLipschitz定数の認定境界を計算するためのフレームワークです。
このアルゴリズムは任意の p-ノルムに対するリプシッツ定数の正確な計算を提供することができる。
論文 参考訳(メタデータ) (2021-05-12T08:06:11Z) - CLIP: Cheap Lipschitz Training of Neural Networks [0.0]
ニューラルネットワークのLipschitz定数を制御するためのCLIPという変分正規化手法を検討する。
提案モデルを数学的に解析し,特にネットワークの出力に対する選択正規化パラメータの影響について考察した。
論文 参考訳(メタデータ) (2021-03-23T13:29:24Z) - Lipschitz Bounded Equilibrium Networks [3.2872586139884623]
本稿では、平衡ニューラルネットワーク、すなわち暗黙の方程式で定義されるネットワークの新しいパラメータ化を提案する。
新しいパラメータ化は、制約のない最適化を通じてトレーニング中にリプシッツ境界を許容する。
画像分類実験では、リプシッツ境界は非常に正確であり、敵攻撃に対する堅牢性を向上させることが示されている。
論文 参考訳(メタデータ) (2020-10-05T01:00:40Z) - On Lipschitz Regularization of Convolutional Layers using Toeplitz
Matrix Theory [77.18089185140767]
リプシッツ正則性は現代のディープラーニングの重要な性質として確立されている。
ニューラルネットワークのリプシッツ定数の正確な値を計算することはNPハードであることが知られている。
より厳密で計算が容易な畳み込み層に対する新しい上限を導入する。
論文 参考訳(メタデータ) (2020-06-15T13:23:34Z) - Exactly Computing the Local Lipschitz Constant of ReLU Networks [98.43114280459271]
ニューラルネットワークの局所リプシッツ定数は、堅牢性、一般化、公正性評価に有用な指標である。
ReLUネットワークのリプシッツ定数を推定するために, 強い不適合性を示す。
このアルゴリズムを用いて、競合するリプシッツ推定器の密度と正規化トレーニングがリプシッツ定数に与える影響を評価する。
論文 参考訳(メタデータ) (2020-03-02T22:15:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。