論文の概要: StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback
- arxiv url: http://arxiv.org/abs/2402.01391v1
- Date: Fri, 2 Feb 2024 13:14:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-05 15:14:23.891622
- Title: StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback
- Title(参考訳): StepCoder: コンパイラのフィードバックから強化学習によるコード生成の改善
- Authors: Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Junjie
Shan, Caishuang Huang, Wei Shen, Xiaoran Fan, Zhiheng Xi, Yuhao Zhou, Tao Ji,
Rui Zheng, Qi Zhang, Xuanjing Huang, Tao Gui
- Abstract要約: コード生成のための新しいRLフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
- 参考スコア(独自算出の注目度): 56.27877582055621
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advancement of large language models (LLMs) has significantly propelled
the field of code generation. Previous work integrated reinforcement learning
(RL) with compiler feedback for exploring the output space of LLMs to enhance
code generation quality. However, the lengthy code generated by LLMs in
response to complex human requirements makes RL exploration a challenge. Also,
since the unit tests may not cover the complicated code, optimizing LLMs by
using these unexecuted code snippets is ineffective. To tackle these
challenges, we introduce StepCoder, a novel RL framework for code generation,
consisting of two main components: CCCS addresses the exploration challenge by
breaking the long sequences code generation task into a Curriculum of Code
Completion Subtasks, while FGO only optimizes the model by masking the
unexecuted code segments to provide Fine-Grained Optimization. In addition, we
furthermore construct the APPS+ dataset for RL training, which is manually
verified to ensure the correctness of unit tests. Experimental results show
that our method improves the ability to explore the output space and
outperforms state-of-the-art approaches in corresponding benchmarks.
- Abstract(参考訳): 大規模言語モデル(LLM)の進歩は、コード生成の分野を著しく推進している。
従来,LLMの出力空間を探索してコード生成品質を向上させるために,コンパイラフィードバックとRLを統合していた。
しかし、複雑な人間の要求に応えてLLMが生成する長大なコードは、RL探索を困難にしている。
また、ユニットテストは複雑なコードをカバーすることができないため、これらの実行されていないコードスニペットを使用することでLLMを最適化するのは効果がない。
cccsは、長いシーケンスのコード生成タスクをコード補完サブタスクのカリキュラムに分割して探索課題に対処しますが、fgoは、実行されていないコードセグメントをマスキングして、きめ細かな最適化を提供するだけで、モデルを最適化します。
さらに,ユニットテストの正確性を保証するために手作業で検証される,rlトレーニング用のapps+データセットも構築する。
実験結果から,提案手法は出力空間を探索し,対応するベンチマークにおける最先端手法よりも優れた性能を示すことがわかった。
関連論文リスト
- OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - EPiC: Cost-effective Search-based Prompt Engineering of LLMs for Code Generation [8.009881267479189]
大規模言語モデル(LLM)は、特にコード生成において、様々なソフトウェア開発タスクで利用が増加している。
我々は、コードのための進化的プロンプトエンジニアリング(EPiC)という別のアプローチを提案し、高品質なコードを生成するより良いプロンプトに向けて、元のプロンプトを進化させる。
最先端(SOTA)LLMベースのコード生成モデルに対する評価は,コスト効率の観点から,EPiCがすべてのベースラインを上回っていることを示している。
論文 参考訳(メタデータ) (2024-08-20T21:15:36Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
コードの品質を調査した結果,より構造化され,読みやすくなれば,コード生成性能が向上することがわかった。
私たちは、これらの原則を使って既存のプログラムを変換する、新しいデータクリーニングパイプラインを構築します。
提案手法を2つのアルゴリズムコード生成ベンチマークで評価した結果,微調整のCodeLLaMa-7Bでは,元のデータセットの微調整に比べて最大30%性能が向上していることがわかった。
論文 参考訳(メタデータ) (2023-11-25T02:45:50Z) - Test-Case-Driven Programming Understanding in Large Language Models for
Better Code Generation [15.166827643436346]
muFiXは、大きな言語モデル(LLM)のコード生成性能を改善する新しいプロンプト技術である。
まず、テストケース分析を利用して仕様の理解を得、自己改善プロセスを可能にする。
muFiXはさらに、提供された理解と実際の理解の間のギャップを減らす方向に向けた仕様理解を修正している。
論文 参考訳(メタデータ) (2023-09-28T02:58:07Z) - RLTF: Reinforcement Learning from Unit Test Feedback [17.35361167578498]
Reinforcement Learning from Unit Test Feedback(リンク)は、新しいオンラインRLフレームワークである。
提案手法は,訓練中にリアルタイムにデータを生成し,高精度なフィードバック信号を用いて高品質なコードを生成する。
論文 参考訳(メタデータ) (2023-07-10T05:18:18Z) - Coarse-Tuning Models of Code with Reinforcement Learning Feedback [0.0]
コード上で事前訓練されたLarge Language Models (LLM) が、プログラム合成の主流のアプローチとして登場した。
コードの品質を評価する接地関数からのフィードバックを用いて、強化学習により事前学習したLLMをさらに訓練するRCCFを提案する。
論文 参考訳(メタデータ) (2023-05-25T22:09:08Z) - CodeT5+: Open Code Large Language Models for Code Understanding and
Generation [72.1638273937025]
大きな言語モデル (LLM) は膨大なソースコードで事前訓練されており、コードインテリジェンスにおいて顕著な進歩を遂げている。
CodeT5+は、コンポーネントモジュールを柔軟に組み合わせて、幅広い下流のコードタスクに適合させることができるコードのためのエンコーダ-デコーダLLMのファミリーである。
我々は、ゼロショット、微調整、命令調整を含む20以上のコード関連ベンチマークでCodeT5+を広範囲に評価した。
論文 参考訳(メタデータ) (2023-05-13T14:23:07Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
CodeRLは、事前訓練されたLMと深層強化学習によるプログラム合成タスクのための新しいフレームワークである。
推論中、我々は重要なサンプリング戦略を持つ新しい生成手順を導入する。
モデルバックボーンについては,CodeT5のエンコーダデコーダアーキテクチャを拡張し,学習目標を拡張した。
論文 参考訳(メタデータ) (2022-07-05T02:42:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。