論文の概要: A Probabilistic Model behind Self-Supervised Learning
- arxiv url: http://arxiv.org/abs/2402.01399v2
- Date: Tue, 4 Jun 2024 11:59:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 13:17:49.428731
- Title: A Probabilistic Model behind Self-Supervised Learning
- Title(参考訳): 自己監督学習の背景にある確率モデル
- Authors: Alice Bizeul, Bernhard Schölkopf, Carl Allen,
- Abstract要約: 自己教師付き学習(SSL)では、アノテートラベルなしで補助的なタスクを通じて表現が学習される。
自己教師型学習のための生成潜在変数モデルを提案する。
識別性SSLのいくつかのファミリーは、表現に匹敵する分布を誘導することを示す。
- 参考スコア(独自算出の注目度): 53.64989127914936
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In self-supervised learning (SSL), representations are learned via an auxiliary task without annotated labels. A common task is to classify augmentations or different modalities of the data, which share semantic content (e.g. an object in an image) but differ in style (e.g. the object's location). Many approaches to self-supervised learning have been proposed, e.g. SimCLR, CLIP, and VicREG, which have recently gained much attention for their representations achieving downstream performance comparable to supervised learning. However, a theoretical understanding of self-supervised methods eludes. Addressing this, we present a generative latent variable model for self-supervised learning and show that several families of discriminative SSL, including contrastive methods, induce a comparable distribution over representations, providing a unifying theoretical framework for these methods. The proposed model also justifies connections drawn to mutual information and the use of a "projection head". Learning representations by fitting the model generatively (termed SimVAE) improves performance over discriminative and other VAE-based methods on simple image benchmarks and significantly narrows the gap between generative and discriminative representation learning in more complex settings. Importantly, as our analysis predicts, SimVAE outperforms self-supervised learning where style information is required, taking an important step toward understanding self-supervised methods and achieving task-agnostic representations.
- Abstract(参考訳): 自己教師付き学習(SSL)では、アノテートラベルなしで補助的なタスクを通じて表現が学習される。
一般的なタスクは、データの拡張や異なるモダリティを分類することであり、セマンティックコンテンツ(例えば、画像内のオブジェクト)を共有するが、スタイル(例えば、オブジェクトの位置)が異なる。
SimCLR、CLIP、VicREGなど、自己教師型学習に対する多くのアプローチが提案されている。
しかし、自己教師付き手法の理論的な理解は困難である。
これに対応するために,自己教師型学習のための生成潜在変数モデルを提案し,比較的手法を含む識別的SSLのいくつかの家系が,表現に匹敵する分布を誘導し,これらの手法の統一的な理論的枠組みを提供することを示す。
提案モデルでは、相互情報に描画された接続と「投影ヘッド」の使用を正当化する。
モデル生成(SimVAEと呼ばれる)を適応させて表現を学習することで、単純な画像ベンチマーク上での識別や他のVAEベースの手法よりも性能を向上し、より複雑な環境で生成的および識別的表現学習のギャップを著しく狭める。
分析が予測しているように、SimVAEは、スタイル情報を必要とする自己教師あり学習よりも優れており、自己教師あり学習の理解とタスク非依存表現の実現に向けて重要な一歩を踏み出している。
関連論文リスト
- Self-Supervised Representation Learning with Meta Comprehensive
Regularization [11.387994024747842]
既存の自己管理フレームワークに組み込まれたCompMod with Meta Comprehensive Regularization (MCR)というモジュールを導入する。
提案したモデルを双方向最適化機構により更新し,包括的特徴を捉える。
本稿では,情報理論と因果対実的視点から提案手法の理論的支援を行う。
論文 参考訳(メタデータ) (2024-03-03T15:53:48Z) - Semi-supervised learning made simple with self-supervised clustering [65.98152950607707]
自己教師付き学習モデルは、人間のアノテーションを必要とせずにリッチな視覚表現を学習することが示されている。
本稿では,クラスタリングに基づく自己教師付き手法を半教師付き学習者へと変換する,概念的に単純だが経験的に強力な手法を提案する。
論文 参考訳(メタデータ) (2023-06-13T01:09:18Z) - Weak Augmentation Guided Relational Self-Supervised Learning [80.0680103295137]
本稿では、異なるインスタンス間の関係をモデル化して表現を学習する新しいリレーショナル自己教師型学習(ReSSL)フレームワークを提案する。
提案手法では,異なるインスタンス間でのペアワイズ類似度の分布を,テクトitrelationmetricとして高めている。
実験の結果,提案したReSSLは,ネットワークアーキテクチャの異なる最先端手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2022-03-16T16:14:19Z) - Contrastive Learning for Fair Representations [50.95604482330149]
訓練された分類モデルは、意図せずバイアスのある表現や予測につながる可能性がある。
対戦訓練のような既存の分類モデルのデバイアス化手法は、訓練に高価であり、最適化が困難であることが多い。
比較学習を取り入れたバイアス軽減手法を提案し、同じクラスラベルを共有するインスタンスに類似した表現を推奨する。
論文 参考訳(メタデータ) (2021-09-22T10:47:51Z) - ReSSL: Relational Self-Supervised Learning with Weak Augmentation [68.47096022526927]
自己教師付き学習は、データアノテーションなしで視覚表現を学ぶことに成功しました。
本稿では,異なるインスタンス間の関係をモデル化して表現を学習する新しいリレーショナルSSLパラダイムを提案する。
提案したReSSLは,性能とトレーニング効率の両面で,従来の最先端アルゴリズムよりも大幅に優れています。
論文 参考訳(メタデータ) (2021-07-20T06:53:07Z) - Distill on the Go: Online knowledge distillation in self-supervised
learning [1.1470070927586016]
最近の研究では、より広範でより深いモデルは、小さなモデルよりも自己監督学習の恩恵を受けることが示されている。
単段階オンライン知識蒸留を用いた自己指導型学習パラダイムであるDistill-on-the-Go(DoGo)を提案する。
以上の結果から,ノイズラベルや限定ラベルの存在下でのパフォーマンス向上がみられた。
論文 参考訳(メタデータ) (2021-04-20T09:59:23Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
原型コントラスト学習(Prototypeal Contrastive Learning, PCL)は、教師なし表現学習法である。
PCLは暗黙的にデータのセマンティック構造を学習された埋め込み空間にエンコードする。
PCLは、複数のベンチマークで最先端のインスタンスワイド・コントラスト学習法より優れている。
論文 参考訳(メタデータ) (2020-05-11T09:53:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。