論文の概要: CodePori: Large-Scale System for Autonomous Software Development Using Multi-Agent Technology
- arxiv url: http://arxiv.org/abs/2402.01411v2
- Date: Tue, 17 Sep 2024 15:57:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 22:31:03.680372
- Title: CodePori: Large-Scale System for Autonomous Software Development Using Multi-Agent Technology
- Title(参考訳): CodePori: マルチエージェント技術を用いた自律ソフトウェア開発のための大規模システム
- Authors: Zeeshan Rasheed, Malik Abdul Sami, Kai-Kristian Kemell, Muhammad Waseem, Mika Saari, Kari Systä, Pekka Abrahamsson,
- Abstract要約: 大規模言語モデル(LLM)とGPT(Generative Pre-trained Transformer)は、ソフトウェア工学の分野を変えました。
我々は,大規模かつ複雑なソフトウェアプロジェクトのコード生成を自動化するように設計された,新しいシステムであるCodePoriを紹介する。
結果: CodePoriは、典型的なソフトウェア開発プロセスに合わせて、大規模プロジェクトの実行コードを生成することができる。
- 参考スコア(独自算出の注目度): 4.2990995991059275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Context: Large Language Models (LLMs) and Generative Pre-trained Transformers (GPTs) have transformed the field of Software Engineering (SE). Existing LLM-based multi-agent models have successfully addressed basic dialogue tasks. However, the potential of LLMs for more challenging tasks, such as automated code generation for large and complex projects, has been investigated in only a few existing works. Objective: This paper aims to investigate the potential of LLM-based agents in the software industry, particularly in enhancing productivity and reducing time-to-market for complex software solutions. Our primary objective is to gain insights into how these agents can fundamentally transform the development of large-scale software. Methods: We introduce CodePori, a novel system designed to automate code generation for large and complex software projects based on functional and non-functional requirements defined by stakeholders. To assess the proposed system performance, we utilized the HumanEval benchmark and manually tested the CodePori model, providing 20 different project descriptions as input and then evaluated the code accuracy by manually executing the code. Results: CodePori is able to generate running code for large-scale projects, aligned with the typical software development process. The HumanEval benchmark results indicate that CodePori improves code accuracy by 89%. A manual assessment conducted by the first author shows that the CodePori system achieved an accuracy rate of 85%. Conclusion: Based on the results, our conclusion is that proposed system demonstrates the transformative potential of LLM-based agents in SE, highlighting their practical applications and opening new opportunities for broader adoption in both industry and academia. Our project is publicly available at https://github.com/GPT-Laboratory/CodePori.
- Abstract(参考訳): コンテキスト: 大規模言語モデル(LLM)と生成事前学習トランスフォーマー(GPT)は、ソフトウェア工学(SE)の分野を変えました。
既存のLLMベースのマルチエージェントモデルは、基本的な対話タスクにうまく対応している。
しかし、大規模かつ複雑なプロジェクトのコードの自動生成など、より困難なタスクのためのLLMの可能性は、いくつかの既存の研究で研究されている。
目的:本論文は,ソフトウェア産業におけるLCMをベースとしたエージェントの可能性,特に生産性の向上と複雑なソフトウェアソリューションの市場投入までの時間短縮を目的としている。
私たちの主な目的は、これらのエージェントが大規模ソフトウェアの開発を根本的に変える方法についての洞察を得ることです。
メソッド: CodePoriは、ステークホルダが定義する機能的および非機能的要件に基づいて、大規模で複雑なソフトウェアプロジェクトのコード生成を自動化するように設計された、新しいシステムです。
提案システムの性能を評価するため,HumanEvalベンチマークを用いてコードPoriモデルを手動でテストし,20の異なるプロジェクト記述を入力として提供し,コードを手動で実行することでコード精度を評価する。
結果: CodePoriは、典型的なソフトウェア開発プロセスに合わせて、大規模プロジェクトの実行コードを生成することができる。
HumanEvalベンチマークの結果は、CodePoriがコード精度を89%改善していることを示している。
最初の著者による手作業による評価では、CodePoriシステムは85%の精度を達成した。
結論: 本研究の結果から, 本システムでは, SE における LLM をベースとしたエージェントの変革の可能性を示すとともに, 実用性を強調し, 産業・学界に広く普及する新たな機会を開くことが示唆された。
私たちのプロジェクトはhttps://github.com/GPT-Laboratory/CodePori.comで公開されています。
関連論文リスト
- Human-In-the-Loop Software Development Agents [12.830816751625829]
大規模言語モデル(LLM)は、ソフトウェア開発タスクを自動的に解決するために導入された。
ソフトウェア開発のためのHuman-in-the-loop LLMベースのエージェントフレームワーク(HULA)を紹介する。
私たちは社内使用のために、HULAフレームワークをAtlassianに設計、実装、デプロイしています。
論文 参考訳(メタデータ) (2024-11-19T23:22:33Z) - OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - Large Language Models as Code Executors: An Exploratory Study [29.545321608864295]
本稿では,Large Language Models (LLM) をコードエグゼキュータとして探索する。
OpenAIのo1、GPT-4o、GPT-3.5、DeepSeek、Qwen-Coderなど、さまざまなLLMでこの実現可能性を調べています。
我々は,コードスニペットを行単位で処理し,弱いモデルの精度を平均7.22%向上させるIIP(Iterative Instruction Prompting)技術を導入する。
論文 参考訳(メタデータ) (2024-10-09T08:23:22Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
Code-Development Benchmark (Codev-Bench)は、細粒度で現実世界、リポジトリレベル、開発者中心の評価フレームワークです。
Codev-Agentは、リポジトリのクローリングを自動化し、実行環境を構築し、既存のユニットテストから動的呼び出しチェーンを抽出し、データ漏洩を避けるために新しいテストサンプルを生成するエージェントベースのシステムである。
論文 参考訳(メタデータ) (2024-10-02T09:11:10Z) - RGD: Multi-LLM Based Agent Debugger via Refinement and Generation Guidance [0.6062751776009752]
大規模言語モデル(LLM)は、コード生成タスクにおいて驚くべきポテンシャルを示しています。
LLMはタスク記述に基づいてコードを生成することができるが、精度は限られている。
コード生成と自動デバッグのためのLLMエージェントの新しいアーキテクチャ:Refinement and Guidancebug (RGD)を紹介する。
RGDはコード生成タスクを複数のステップに分割し、より明確なワークフローを確保し、自己回帰とフィードバックに基づいた反復的なコード改善を可能にする。
論文 参考訳(メタデータ) (2024-10-02T05:07:02Z) - A Survey on Evaluating Large Language Models in Code Generation Tasks [30.256255254277914]
本稿では,コード生成タスクにおけるLarge Language Models (LLMs) の性能評価に使用される現在の手法と指標について概説する。
自動ソフトウェア開発の需要が急速に増加し、LLMはコード生成の分野で大きな可能性を示してきた。
論文 参考訳(メタデータ) (2024-08-29T12:56:06Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - A Survey on Large Language Models for Code Generation [9.555952109820392]
大規模言語モデル(LLM)は、様々なコード関連のタスクで顕著な進歩を遂げています。
本調査は、総合的かつ最新の文献レビューを提供することで、学界と実践的発展のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-06-01T17:48:15Z) - InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models [56.723509505549536]
InfiBenchは、私たちの知識に合ったコードのための、最初の大規模フリーフォーム質問回答(QA)ベンチマークです。
慎重に選択された234の高品質なStack Overflow質問で構成されており、15のプログラミング言語にまたがっている。
InfiBench上で100以上の最新のコードLLMに対して,系統的評価を行い,新しい知見と洞察に富んだ結果を得た。
論文 参考訳(メタデータ) (2024-03-11T02:06:30Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - CodeTF: One-stop Transformer Library for State-of-the-art Code LLM [72.1638273937025]
我々は、最先端のCode LLMとコードインテリジェンスのためのオープンソースのTransformerベースのライブラリであるCodeTFを紹介する。
我々のライブラリは、事前訓練されたコードLLMモデルと人気のあるコードベンチマークのコレクションをサポートします。
CodeTFが機械学習/生成AIとソフトウェア工学のギャップを埋められることを願っている。
論文 参考訳(メタデータ) (2023-05-31T05:24:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。