論文の概要: Understanding Adam Optimizer via Online Learning of Updates: Adam is FTRL in Disguise
- arxiv url: http://arxiv.org/abs/2402.01567v2
- Date: Thu, 30 May 2024 14:49:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 23:13:17.719172
- Title: Understanding Adam Optimizer via Online Learning of Updates: Adam is FTRL in Disguise
- Title(参考訳): アップデートのオンライン学習を通じてAdam Optimizerを理解する:AdamはFTRLである
- Authors: Kwangjun Ahn, Zhiyu Zhang, Yunbum Kook, Yan Dai,
- Abstract要約: 本稿では,オンライン学習の観点から,Adamのアルゴリズムコンポーネントの利点について考察する。
私たちは、AdamがFTRL(Follow-the-Regularized-Leader)と呼ばれる原則付きオンライン学習フレームワークに対応していると考えています。
- 参考スコア(独自算出の注目度): 13.255413751433123
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the success of the Adam optimizer in practice, the theoretical understanding of its algorithmic components still remains limited. In particular, most existing analyses of Adam show the convergence rate that can be simply achieved by non-adative algorithms like SGD. In this work, we provide a different perspective based on online learning that underscores the importance of Adam's algorithmic components. Inspired by Cutkosky et al. (2023), we consider the framework called online learning of updates/increments, where we choose the updates/increments of an optimizer based on an online learner. With this framework, the design of a good optimizer is reduced to the design of a good online learner. Our main observation is that Adam corresponds to a principled online learning framework called Follow-the-Regularized-Leader (FTRL). Building on this observation, we study the benefits of its algorithmic components from the online learning perspective.
- Abstract(参考訳): アダム・オプティマイザが実際に成功したにも拘わらず、アルゴリズムの構成要素に関する理論的理解は依然として限られている。
特に、Adamの既存の分析のほとんどは、SGDのような非適応的アルゴリズムによって簡単に達成できる収束率を示している。
本研究では,Adamのアルゴリズム的コンポーネントの重要性を浮き彫りにするオンライン学習に基づく異なる視点を提供する。
Cutkoskyらにインスパイアされた2023年、我々はオンライン学習と呼ばれるフレームワークを検討し、オンライン学習者に基づいて最適化者の更新/増分を選択する。
このフレームワークにより、優れたオプティマイザの設計は、優れたオンライン学習者の設計に還元される。
我々は、AdamがFTRL(Follow-the-Regularized-Leader)と呼ばれる原則付きオンライン学習フレームワークに対応していると考えている。
この観察に基づいて,オンライン学習の観点からアルゴリズム成分の利点を考察する。
関連論文リスト
- From Learning to Optimize to Learning Optimization Algorithms [4.066869900592636]
我々は、古典的アルゴリズムが従うが、これまでは、学習の最適化(L2O)には使われていない重要な原則を特定します。
我々は,データ,アーキテクチャ,学習戦略を考慮した汎用設計パイプラインを提供し,古典最適化とL2Oの相乗効果を実現する。
我々は,新しい学習強化BFGSアルゴリズムを設計し,テスト時に多くの設定に適応する数値実験を行うことにより,これらの新原理の成功を実証する。
論文 参考訳(メタデータ) (2024-05-28T14:30:07Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - A Generalist Neural Algorithmic Learner [18.425083543441776]
我々は、幅広いアルゴリズムを実行することを学習できる単一のグラフニューラルネットワークプロセッサを構築している。
マルチタスク方式でアルゴリズムを効果的に学習できることを示す。
論文 参考訳(メタデータ) (2022-09-22T16:41:33Z) - Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning [92.18524491615548]
対照的な自己指導型学習は、(深層)強化学習(RL)の実践にうまく統合されている
我々は,低ランク遷移を伴うマルコフ決定過程(MDP)とマルコフゲーム(MG)のクラスにおいて,コントラスト学習によってRLをどのように強化できるかを検討する。
オンライン環境下では,MDPやMGのオンラインRLアルゴリズムと対照的な損失を生かした,新しい高信頼境界(UCB)型アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-07-29T17:29:08Z) - Towards Diverse Evaluation of Class Incremental Learning: A Representation Learning Perspective [67.45111837188685]
クラスインクリメンタル学習(CIL)アルゴリズムは、インクリメンタルに到着したデータから新しいオブジェクトクラスを継続的に学習することを目的としている。
表現学習における様々な評価プロトコルを用いて,CILアルゴリズムによって訓練されたニューラルネットワークモデルを実験的に解析する。
論文 参考訳(メタデータ) (2022-06-16T11:44:11Z) - An Improved Reinforcement Learning Algorithm for Learning to Branch [12.27934038849211]
ブランチ・アンド・バウンド(B&B)は最適化の一般的な方法である。
本稿では,新しい強化学習に基づくB&Bアルゴリズムを提案する。
提案アルゴリズムの性能を3つの公開研究ベンチマークで評価した。
論文 参考訳(メタデータ) (2022-01-17T04:50:11Z) - How Do Adam and Training Strategies Help BNNs Optimization? [50.22482900678071]
我々は、AdamがBNNの粗い損失面を扱うのに適しており、より高い一般化能力でより良い最適値に達することを示す。
我々は、既存のAdamベースの最適化に基づいて、ImageNetデータセット上で70.5%のトップ1の精度を達成する簡単なトレーニングスキームを導出する。
論文 参考訳(メタデータ) (2021-06-21T17:59:51Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
メタラーニング強化学習アルゴリズムの手法を提案する。
学習アルゴリズムはドメインに依存しないため、トレーニング中に見えない新しい環境に一般化することができる。
従来の制御タスク、gridworld型タスク、atariゲームよりも優れた一般化性能を得る2つの学習アルゴリズムに注目した。
論文 参考訳(メタデータ) (2021-01-08T18:55:07Z) - Meta-Gradient Reinforcement Learning with an Objective Discovered Online [54.15180335046361]
本稿では,深層ニューラルネットワークによって柔軟にパラメータ化される,自己目的のメタ段階的降下に基づくアルゴリズムを提案する。
目的はオンラインで発見されるため、時間とともに変化に適応することができる。
Atari Learning Environmentでは、メタグラディエントアルゴリズムが時間とともに適応して、より効率よく学習する。
論文 参考訳(メタデータ) (2020-07-16T16:17:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。