論文の概要: Time-Varying Gaussian Process Bandits with Unknown Prior
- arxiv url: http://arxiv.org/abs/2402.01632v3
- Date: Wed, 16 Oct 2024 14:46:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:39:46.814763
- Title: Time-Varying Gaussian Process Bandits with Unknown Prior
- Title(参考訳): 時間変化ガウス過程と未知の事前処理
- Authors: Juliusz Ziomek, Masaki Adachi, Michael A. Osborne,
- Abstract要約: PE-GP-UCBは時変ベイズ最適化問題を解くことができる。
これは、観測された関数の値が以前のいくつかの値と一致しているという事実に依存している。
- 参考スコア(独自算出の注目度): 18.93478528448966
- License:
- Abstract: Bayesian optimisation requires fitting a Gaussian process model, which in turn requires specifying prior on the unknown black-box function -- most of the theoretical literature assumes this prior is known. However, it is common to have more than one possible prior for a given black-box function, for example suggested by domain experts with differing opinions. In some cases, the type-II maximum likelihood estimator for selecting prior enjoys the consistency guarantee, but it does not universally apply to all types of priors. If the problem is stationary, one could rely on the Regret Balancing scheme to conduct the optimisation, but in the case of time-varying problems, such a scheme cannot be used. To address this gap in existing research, we propose a novel algorithm, PE-GP-UCB, which is capable of solving time-varying Bayesian optimisation problems even without the exact knowledge of the function's prior. The algorithm relies on the fact that either the observed function values are consistent with some of the priors, in which case it is easy to reject the wrong priors, or the observations are consistent with all candidate priors, in which case it does not matter which prior our model relies on. We provide a regret bound on the proposed algorithm. Finally, we empirically evaluate our algorithm on toy and real-world time-varying problems and show that it outperforms the maximum likelihood estimator, fully Bayesian treatment of unknown prior and Regret Balancing.
- Abstract(参考訳): ベイズ最適化では、未知のブラックボックス関数に先立って指定する必要があるガウス過程モデルに適合する必要がある。
しかし、例えば、異なる意見を持つドメインの専門家によって提案されるような、与えられたブラックボックス関数の前に複数の可能性を持つことは一般的である。
場合によっては、事前選択のためのタイプII極大推定器は整合性を保証するが、すべての種類の先行に普遍的に適用されない。
問題が定常であれば、最適化を行うにはレギュレット・バランシング(Regret Balancing)のスキームに頼ることができるが、時変問題の場合、そのようなスキームは使用できない。
既存研究におけるこのギャップに対処するため,関数の事前知識を必要とせずに,時変ベイズ最適化問題を解くことのできる新しいアルゴリズムPE-GP-UCBを提案する。
このアルゴリズムは、観測された関数値がいくつかの先行値と一致しているか、間違った先行値の否定が容易であるか、あるいは観測がすべての候補先行値と一致しているか、その場合、モデルのどの先行値が依存しているかは関係しないという事実に依存している。
提案アルゴリズムに対する後悔の意を表す。
最後に,おもちゃや実世界の時間変化問題に対して,我々のアルゴリズムを実証的に評価し,最大極大推定器,未知のベイズ的処理,レグレト・バランシングよりも優れていることを示す。
関連論文リスト
- Near-Optimal Algorithm for Non-Stationary Kernelized Bandits [6.379833644595456]
時変ベイズ最適化(英語版)とも呼ばれる非定常カーネル化バンドイット問題(KB)について検討する。
我々は,2乗指数およびマタン核を持つ非定常KBに対して,アルゴリズムに依存しない最初のリフレッシュローバウンドを示す。
本稿では,ランダムな置換による位相除去を再開する手法を提案する。
論文 参考訳(メタデータ) (2024-10-21T14:28:26Z) - Principled Preferential Bayesian Optimization [22.269732173306192]
優先ベイズ最適化(BO)の問題について検討する。
一対の候補解よりも優先的なフィードバックしか持たないブラックボックス関数を最適化することを目指している。
この問題を解決するために,効率的な計算手法を用いた楽観的アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-02-08T02:57:47Z) - Branch & Learn with Post-hoc Correction for Predict+Optimize with
Unknown Parameters in Constraints [5.762370982168012]
ポストホックレグレ(Post-hoc Regret)は、不満足な予測を修正するコストを考慮した損失関数である。
簡単な条件を満たす再帰アルゴリズムにより解ける任意の最適化問題に対して,ポストホックレギュレットを正確に計算する方法を示す。
論文 参考訳(メタデータ) (2023-03-12T16:23:58Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
統計的決定論の研究からシャノンエントロピーの一般化を考える。
まず,このエントロピーの特殊なケースがBO手順でよく用いられる獲得関数に繋がることを示す。
次に、損失に対する選択肢の選択が、どのようにして柔軟な獲得関数の族をもたらすかを示す。
論文 参考訳(メタデータ) (2022-10-04T04:43:58Z) - Regret Bounds for Expected Improvement Algorithms in Gaussian Process
Bandit Optimization [63.8557841188626]
期待されている改善(EI)アルゴリズムは、不確実性の下で最適化するための最も一般的な戦略の1つである。
本稿では,GP予測平均を通した標準既存値を持つEIの変種を提案する。
我々のアルゴリズムは収束し、$mathcal O(gamma_TsqrtT)$の累積後悔境界を達成することを示す。
論文 参考訳(メタデータ) (2022-03-15T13:17:53Z) - Metalearning Linear Bandits by Prior Update [7.519872646378836]
完全なベイズ的アプローチは、問題のパラメータは既知の事前から生成されると仮定するが、実際にはそのような情報は欠落することが多い。
この問題は、ある部分的な情報を持つ意思決定設定において悪化し、不特定事前の使用は、探索の質が悪く、性能が劣る可能性がある。
この研究において、線形帯域幅とガウス事前の文脈において、事前推定が真の事前に十分近い限り、不特定事前を用いたアルゴリズムの性能は真の先行を用いたアルゴリズムのそれに近いことを証明した。
論文 参考訳(メタデータ) (2021-07-12T11:17:01Z) - Bayesian decision-making under misspecified priors with applications to
meta-learning [64.38020203019013]
トンプソンサンプリングやその他のシーケンシャルな意思決定アルゴリズムは、文脈的包帯における探索と探索のトレードオフに取り組むための一般的なアプローチである。
性能は不特定な事前条件で優雅に低下することを示す。
論文 参考訳(メタデータ) (2021-07-03T23:17:26Z) - Towards Feature-Based Performance Regression Using Trajectory Data [0.9281671380673306]
ブラックボックス最適化は非常に活発な研究領域であり、毎年多くの新しいアルゴリズムが開発されている。
アルゴリズムの多様性はメタプロブレム(メタプロブレム):どのアルゴリズムが与えられた問題を選択するか?
過去の研究では、探索ランドスケープ分析に基づくインスタンスごとのアルゴリズム選択が、このメタプロブレムに取り組むための効率的な手段であることが示されている。
論文 参考訳(メタデータ) (2021-02-10T10:19:13Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
近年、深層ネットワークにおける非最適化アルゴリズムの解析やデータ問題への関心が高まっており、非最適化のための理論的最適化アルゴリズムの最近の結果の概要を概説する。
論文 参考訳(メタデータ) (2020-12-11T08:28:51Z) - Incorporating Expert Prior in Bayesian Optimisation via Space Warping [54.412024556499254]
大きな探索空間では、アルゴリズムは関数の最適値に達する前に、いくつかの低関数値領域を通過する。
このコールドスタートフェーズの1つのアプローチは、最適化を加速できる事前知識を使用することである。
本稿では,関数の事前分布を通じて,関数の最適性に関する事前知識を示す。
先行分布は、探索空間を最適関数の高確率領域の周りに拡張し、最適関数の低確率領域の周りに縮小するようにワープする。
論文 参考訳(メタデータ) (2020-03-27T06:18:49Z) - Time-varying Gaussian Process Bandit Optimization with Non-constant
Evaluation Time [93.6788993843846]
非定常評価時間を効果的に処理できる新しい時間変化ベイズ最適化アルゴリズムを提案する。
我々の限界は、評価時間列のパターンが問題の難易度に大きな影響を与えることを決定づける。
論文 参考訳(メタデータ) (2020-03-10T13:28:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。