A Deep Learning Approach Towards Student Performance Prediction in
Online Courses: Challenges Based on a Global Perspective
- URL: http://arxiv.org/abs/2402.01655v1
- Date: Wed, 10 Jan 2024 19:13:19 GMT
- Title: A Deep Learning Approach Towards Student Performance Prediction in
Online Courses: Challenges Based on a Global Perspective
- Authors: Abdallah Moubayed, MohammadNoor Injadat, Nouh Alhindawi, Ghassan
Samara, Sara Abuasal, Raed Alazaidah
- Abstract summary: This work proposes the use of deep learning techniques (CNN and RNN-LSTM) to predict the students' performance at the midpoint stage of the online course delivery.
Experimental results show that deep learning models have promising performance as they outperform other optimized traditional ML models.
- Score: 0.6058427379240696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Analyzing and evaluating students' progress in any learning environment is
stressful and time consuming if done using traditional analysis methods. This
is further exasperated by the increasing number of students due to the shift of
focus toward integrating the Internet technologies in education and the focus
of academic institutions on moving toward e-Learning, blended, or online
learning models. As a result, the topic of student performance prediction has
become a vibrant research area in recent years. To address this, machine
learning and data mining techniques have emerged as a viable solution. To that
end, this work proposes the use of deep learning techniques (CNN and RNN-LSTM)
to predict the students' performance at the midpoint stage of the online course
delivery using three distinct datasets collected from three different regions
of the world. Experimental results show that deep learning models have
promising performance as they outperform other optimized traditional ML models
in two of the three considered datasets while also having comparable
performance for the third dataset.
Related papers
- Accurate Multi-Category Student Performance Forecasting at Early Stages of Online Education Using Neural Networks [2.195766695109612]
This study introduces a novel neural network-based approach capable of accurately predicting student performance.
The proposed model predicts outcomes in Distinction, Fail, Pass, and Withdrawn categories.
The results indicate that the prediction accuracy of the proposed method is about 25% more than the existing state-of-the-art.
arXiv Detail & Related papers (2024-12-08T13:37:30Z) - Ensemble Learning via Knowledge Transfer for CTR Prediction [9.891226177252653]
In this paper, we investigate larger ensemble networks and find three inherent limitations in commonly used ensemble learning method.
We propose a novel model-agnostic Ensemble Knowledge Transfer Framework (EKTF)
Experimental results on five real-world datasets demonstrate the effectiveness and compatibility of EKTF.
arXiv Detail & Related papers (2024-11-25T06:14:20Z) - Research on Education Big Data for Students Academic Performance Analysis based on Machine Learning [8.556825982336807]
In this work, a machine learning model based on Long Short-Term Memory Network (LSTM) was used to conduct an in-depth analysis of educational big data.
The LSTM model efficiently processes time series data, allowing us to capture time-dependent and long-term trends in students' learning activities.
This approach is particularly useful for analyzing student progress, engagement, and other behavioral patterns to support personalized education.
arXiv Detail & Related papers (2024-06-25T01:19:22Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
Existing deep learning solutions suffer from three major limitations.
We introduce FedGmTE-Net++, a federated graph-based multi-trajectory evolution network.
Using the power of federation, we aggregate local learnings among diverse hospitals with limited datasets.
arXiv Detail & Related papers (2024-01-01T10:20:01Z) - Exploring Federated Unlearning: Analysis, Comparison, and Insights [101.64910079905566]
federated unlearning enables the selective removal of data from models trained in federated systems.
This paper examines existing federated unlearning approaches, examining their algorithmic efficiency, impact on model accuracy, and effectiveness in preserving privacy.
We propose the OpenFederatedUnlearning framework, a unified benchmark for evaluating federated unlearning methods.
arXiv Detail & Related papers (2023-10-30T01:34:33Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [65.57123249246358]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Click-Based Student Performance Prediction: A Clustering Guided
Meta-Learning Approach [10.962724342736042]
We study the problem of predicting student knowledge acquisition in online courses from clickstream behavior.
Our methodology for predicting in-video quiz performance is based on three key ideas we develop.
arXiv Detail & Related papers (2021-10-28T14:03:29Z) - Assessing the Knowledge State of Online Students -- New Data, New
Approaches, Improved Accuracy [28.719009375724028]
Student performance (SP) modeling is a critical step for building adaptive online teaching systems.
This study is the first to use four very large datasets made available recently from four distinct intelligent tutoring systems.
arXiv Detail & Related papers (2021-09-04T00:08:59Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Peer-inspired Student Performance Prediction in Interactive Online
Question Pools with Graph Neural Network [56.62345811216183]
We propose a novel approach using Graph Neural Networks (GNNs) to achieve better student performance prediction in interactive online question pools.
Specifically, we model the relationship between students and questions using student interactions to construct the student-interaction-question network.
We evaluate the effectiveness of our approach on a real-world dataset consisting of 104,113 mouse trajectories generated in the problem-solving process of over 4000 students on 1631 questions.
arXiv Detail & Related papers (2020-08-04T14:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.