Research on Education Big Data for Students Academic Performance Analysis based on Machine Learning
- URL: http://arxiv.org/abs/2407.16907v1
- Date: Tue, 25 Jun 2024 01:19:22 GMT
- Title: Research on Education Big Data for Students Academic Performance Analysis based on Machine Learning
- Authors: Chun Wang, Jiexiao Chen, Ziyang Xie, Jianke Zou,
- Abstract summary: In this work, a machine learning model based on Long Short-Term Memory Network (LSTM) was used to conduct an in-depth analysis of educational big data.
The LSTM model efficiently processes time series data, allowing us to capture time-dependent and long-term trends in students' learning activities.
This approach is particularly useful for analyzing student progress, engagement, and other behavioral patterns to support personalized education.
- Score: 8.556825982336807
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The application of the Internet in the field of education is becoming more and more popular, and a large amount of educational data is generated in the process. How to effectively use these data has always been a key issue in the field of educational data mining. In this work, a machine learning model based on Long Short-Term Memory Network (LSTM) was used to conduct an in-depth analysis of educational big data to evaluate student performance. The LSTM model efficiently processes time series data, allowing us to capture time-dependent and long-term trends in students' learning activities. This approach is particularly useful for analyzing student progress, engagement, and other behavioral patterns to support personalized education. In an experimental analysis, we verified the effectiveness of the deep learning method in predicting student performance by comparing the performance of different models. Strict cross-validation techniques are used to ensure the accuracy and generalization of experimental results.
Related papers
- A Deep Learning Approach Towards Student Performance Prediction in
Online Courses: Challenges Based on a Global Perspective [0.6058427379240696]
This work proposes the use of deep learning techniques (CNN and RNN-LSTM) to predict the students' performance at the midpoint stage of the online course delivery.
Experimental results show that deep learning models have promising performance as they outperform other optimized traditional ML models.
arXiv Detail & Related papers (2024-01-10T19:13:19Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Multi-granulariy Time-based Transformer for Knowledge Tracing [9.788039182463768]
We leverage students historical data, including their past test scores, to create a personalized model for each student.
We then use these models to predict their future performance on a given test.
arXiv Detail & Related papers (2023-04-11T14:46:38Z) - Exploring the Impact of Instruction Data Scaling on Large Language
Models: An Empirical Study on Real-World Use Cases [17.431381376675432]
In this paper we explore the performance of large language models based on instruction tuning across different scales of instruction data.
With Bloomz-7B1-mt as the base model, the results show that merely increasing the amount of instruction data leads to continuous improvement in tasks such as open-ended generation.
We propose potential future research directions such as effectively selecting high-quality training data, scaling base models and training methods specialized for hard tasks.
arXiv Detail & Related papers (2023-03-26T14:49:37Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
We propose a responsible active learning method, namely Peer Study Learning (PSL), to simultaneously preserve data privacy and improve model stability.
We first introduce a human-in-the-loop teacher-student architecture to isolate unlabelled data from the task learner (teacher) on the cloud-side.
During training, the task learner instructs the light-weight active learner which then provides feedback on the active sampling criterion.
arXiv Detail & Related papers (2022-11-24T13:18:27Z) - Towards Robust Dataset Learning [90.2590325441068]
We propose a principled, tri-level optimization to formulate the robust dataset learning problem.
Under an abstraction model that characterizes robust vs. non-robust features, the proposed method provably learns a robust dataset.
arXiv Detail & Related papers (2022-11-19T17:06:10Z) - Process-BERT: A Framework for Representation Learning on Educational
Process Data [68.8204255655161]
We propose a framework for learning representations of educational process data.
Our framework consists of a pre-training step that uses BERT-type objectives to learn representations from sequential process data.
We apply our framework to the 2019 nation's report card data mining competition dataset.
arXiv Detail & Related papers (2022-04-28T16:07:28Z) - Online Continual Learning with Natural Distribution Shifts: An Empirical
Study with Visual Data [101.6195176510611]
"Online" continual learning enables evaluating both information retention and online learning efficacy.
In online continual learning, each incoming small batch of data is first used for testing and then added to the training set, making the problem truly online.
We introduce a new benchmark for online continual visual learning that exhibits large scale and natural distribution shifts.
arXiv Detail & Related papers (2021-08-20T06:17:20Z) - Do we need to go Deep? Knowledge Tracing with Big Data [5.218882272051637]
We use EdNet, the largest student interaction dataset publicly available in the education domain, to understand how accurately both deep and traditional models predict future student performances.
Our work observes that logistic regression models with carefully engineered features outperformed deep models from extensive experimentation.
arXiv Detail & Related papers (2021-01-20T22:40:38Z) - Computational Models for Academic Performance Estimation [21.31653695065347]
This paper presents an in-depth analysis of deep learning and machine learning approaches for the formulation of an automated students' performance estimation system.
Our main contributions are (a) a large dataset with fifteen courses (shared publicly for academic research) (b) statistical analysis and ablations on the estimation problem for this dataset.
Unlike previous approaches that rely on feature engineering or logical function deduction, our approach is fully data-driven and thus highly generic with better performance across different prediction tasks.
arXiv Detail & Related papers (2020-09-06T07:31:37Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.