論文の概要: Assistive Large Language Model Agents for Socially-Aware Negotiation Dialogues
- arxiv url: http://arxiv.org/abs/2402.01737v2
- Date: Tue, 18 Jun 2024 13:10:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-20 04:25:08.559445
- Title: Assistive Large Language Model Agents for Socially-Aware Negotiation Dialogues
- Title(参考訳): ソーシャル・アウェア・ネゴシエーション対話のための大規模言語モデルエージェント
- Authors: Yuncheng Hua, Lizhen Qu, Gholamreza Haffari,
- Abstract要約: 我々はLarge Language Models(LLM)に基づく支援エージェントを開発する。
2つのLLMエージェントをロールプレイに参加させることで、ビジネス交渉をシミュレートする。
第3のLLMは、交渉結果を改善するための基準に違反した発話を書き換える仲介役として機能する。
- 参考スコア(独自算出の注目度): 47.977032883078664
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop assistive agents based on Large Language Models (LLMs) that aid interlocutors in business negotiations. Specifically, we simulate business negotiations by letting two LLM-based agents engage in role play. A third LLM acts as a remediator agent to rewrite utterances violating norms for improving negotiation outcomes. We introduce a simple tuning-free and label-free In-Context Learning (ICL) method to identify high-quality ICL exemplars for the remediator, where we propose a novel select criteria, called value impact, to measure the quality of the negotiation outcomes. We provide rich empirical evidence to demonstrate its effectiveness in negotiations across three different negotiation topics. The source code and the generated dataset will be publicly available upon acceptance.
- Abstract(参考訳): 我々は,ビジネス交渉における対話者を支援する大規模言語モデル(LLM)に基づく支援エージェントを開発する。
具体的には、2つのLLMエージェントをロールプレイに参加させることで、ビジネス交渉をシミュレートする。
第3のLLMは、交渉結果を改善するための基準に違反した発話を書き換える仲介役として機能する。
そこで,提案手法では,評価結果の質を評価するために,値インパクトと呼ばれる新しい選択基準を提案する。
3つの異なる交渉トピックにわたる交渉において,その効果を示すための実証的証拠を豊富に提供する。
ソースコードと生成されたデータセットは、受理時に公開される。
関連論文リスト
- Are LLMs Effective Negotiators? Systematic Evaluation of the
Multifaceted Capabilities of LLMs in Negotiation Dialogues [5.021504231639885]
LLMは、対話システムの設計から教育的なフィードバックの提供、データ収集のプラクティスのスケールアップに至るまで、交渉研究のさまざまな側面を前進させることができる。
本分析は, GPT-4の諸課題における優位性の増大を裏付けるものである。
例えば、交渉対話に関する主観的な評価を行うとき、モデルは人間のプレイヤーとあまり相関しない。
論文 参考訳(メタデータ) (2024-02-21T06:11:03Z) - Modelling Political Coalition Negotiations Using LLM-based Agents [53.934372246390495]
我々は、新しいNLPタスクとして連立交渉を導入し、それを大規模言語モデルに基づくエージェント間の交渉としてモデル化する。
我々は、欧州政党の宣言とこれらの国における多数の選挙に関する連立協定を含む多言語データセット「POLCA」を導入する。
本稿では、政党間の連立交渉の過程をシミュレートし、その結果を予測するために、階層的なマルコフ決定プロセスを提案する。
論文 参考訳(メタデータ) (2024-02-18T21:28:06Z) - How Well Can LLMs Negotiate? NegotiationArena Platform and Analysis [50.15061156253347]
人間は自動車の価格から共通の資源の共有方法まで、あらゆることを交渉する。
大規模言語モデル(LLM)を人間の代理エージェントとして使うことへの関心が急速に高まっているため、そのようなLLMエージェントも交渉できる必要がある。
我々は,LLMエージェントの交渉能力を評価し,検証するためのフレキシブルなフレームワークであるNegotiationArenaを開発した。
論文 参考訳(メタデータ) (2024-02-08T17:51:48Z) - INA: An Integrative Approach for Enhancing Negotiation Strategies with
Reward-Based Dialogue System [22.392304683798866]
本稿では,オンラインマーケットプレース向けに設計された対話エージェントを提案する。
我々は,交渉担当者を訓練するための交渉作業に適した,一連の新しい報酬を雇用している。
提案手法と報奨システムはエージェントの交渉能力を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-10-27T15:31:16Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
我々は,大言語モデル(LLM)を評価するためにスコーラブルネゴシエーション(scorable negotiations)を提案する。
合意に達するには、エージェントは強力な算術、推論、探索、計画能力を持つ必要がある。
我々は、新しいゲームを作成し、進化するベンチマークを持つことの難しさを増大させる手順を提供する。
論文 参考訳(メタデータ) (2023-09-29T13:33:06Z) - Language of Bargaining [60.218128617765046]
我々は、言語の使用が二国間交渉をどのように形成するかを研究するための新しいデータセットを構築した。
我々の研究は、交渉の結果を予測する言語信号も明らかにしている。
論文 参考訳(メタデータ) (2023-06-12T13:52:01Z) - Prompting and Evaluating Large Language Models for Proactive Dialogues:
Clarification, Target-guided, and Non-collaboration [72.04629217161656]
本研究は, 明瞭化, 目標誘導, 非協調対話の3つの側面に焦点をあてる。
LLMの能動性を高めるために,プロアクティブ・チェーン・オブ・ソート・プロンプト方式を提案する。
論文 参考訳(メタデータ) (2023-05-23T02:49:35Z) - Numerical Abstract Persuasion Argumentation for Expressing Concurrent
Multi-Agent Negotiations [3.7311680121118336]
2つのエージェントe1,e2による交渉プロセスは、例えばe1,e3間の別の交渉プロセスによってインターリーブすることができる。
議論に基づく交渉の既存の提案は、主に二国間交渉に焦点を当てている。
拡張理論は資源不足に対するマルチエージェントの同時交渉に適していることを示す。
論文 参考訳(メタデータ) (2020-01-23T01:46:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。