論文の概要: Compensatory Biases Under Cognitive Load: Reducing Selection Bias in Large Language Models
- arxiv url: http://arxiv.org/abs/2402.01740v2
- Date: Thu, 4 Apr 2024 19:54:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 18:25:45.590521
- Title: Compensatory Biases Under Cognitive Load: Reducing Selection Bias in Large Language Models
- Title(参考訳): 認知的負荷による補償バイアス:大規模言語モデルにおける選択バイアスの低減
- Authors: J. E. Eicher, R. F. Irgolič,
- Abstract要約: 大規模言語モデル(LLM)は意味に基づくタスクの解釈と実行に役立っている。
本研究は、これらのバイアスを批判的に検討し、代表リスト選択タスクへの影響を定量化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) like gpt-3.5-turbo and claude-instant-1.2 have become instrumental in interpreting and executing semantic-based tasks. Unfortunately, these models' inherent biases, akin to human cognitive biases, adversely affect their performance. Particularly affected is object selection from lists; a fundamental operation in digital navigation and decision-making. This research critically examines these biases and quantifies the effects on a representative list selection task. To explore these biases, we conducted a series of controlled experiments, manipulating temperature, list length, object identity, object type, prompt complexity, and model. This enabled us to isolate and measure the influence of the biases on selection behavior. Our findings show that bias structure is strongly dependent on the model, with object type modulating the magnitude of the effect. With a strong primacy effect, causing the first objects in a list to be disproportionately represented in outputs. Furthermore the usage of guard rails, a prompt engineering method of ensuring a response structure, can increase bias and decrease instruction adherence when combined with a selection task. The bias is ablated when the guard rail step is separated from the list sampling step, lowering the complexity of each individual task. The implications of this research are two-fold, practically providing a guide for designing unbiased LLM applications and theoretically suggesting that LLMs experience a form of cognitive load compensated for by increasing bias.
- Abstract(参考訳): gpt-3.5-turboやclaude-instant-1.2のような大きな言語モデル(LLM)は意味に基づくタスクの解釈や実行に役立っている。
残念なことに、これらのモデル固有のバイアスは、人間の認知バイアスに似た、パフォーマンスに悪影響を及ぼす。
特に影響を受けるのは、リストからオブジェクトを選択することであり、これはデジタルナビゲーションと意思決定における基本的な操作である。
本研究は、これらのバイアスを批判的に検討し、代表リスト選択タスクへの影響を定量化する。
これらのバイアスを探索するため,温度操作,リスト長,オブジェクト識別,オブジェクトタイプ,迅速な複雑性,モデルなど,一連の制御された実験を行った。
これにより、選択行動に対するバイアスの影響を分離し、測定することができます。
以上の結果から, モデルにバイアス構造が強く依存していることが示唆された。
強いプライマリー効果により、リストの最初のオブジェクトが不均等に出力に表現される。
さらに、応答構造を保証する素早いエンジニアリング手法であるガードレールの使用は、選択タスクと組み合わせることでバイアスを増大させ、命令の順守を低減することができる。
ガードレールステップがリストサンプリングステップから分離されるとバイアスが緩和され、個々のタスクの複雑さが低下する。
この研究の意味は2つあり、実質的には、偏見のないLLMアプリケーションを設計するためのガイドを提供し、理論的には、LLMはバイアスの増加によって補償される認知的負荷の形式を経験することを示唆している。
関連論文リスト
- Addressing Blind Guessing: Calibration of Selection Bias in Multiple-Choice Question Answering by Video Language Models [16.34646723046073]
ビデオ言語モデル(VLM)は、複雑なビデオ中心の質問に答えるように設計されている。
現在のベンチマークでは、選択バイアスのため、VLMの完全な推論能力の取得に失敗している。
本研究は,ビデオ-テキスト LLM モデルにおける選択バイアスについて,初めて焦点を絞った研究である。
論文 参考訳(メタデータ) (2024-10-18T07:52:22Z) - Aggregation Artifacts in Subjective Tasks Collapse Large Language Models' Posteriors [74.04775677110179]
In-context Learning (ICL) は、Large Language Models (LLM) を用いた自然言語処理の主要な手法となっている。
本研究は,低アグリゲーション,異質なアノテーションを組み合わせたアグリゲーションの結果が,プロンプトに有害なノイズを生じさせるアノテーションのアーティファクトに繋がるかどうかを考察する。
この結果から,アグリゲーションは主観的タスクのモデル化において不明瞭な要因であり,代わりに個人をモデリングすることを重視することが示唆された。
論文 参考訳(メタデータ) (2024-10-17T17:16:00Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
SMOE(Sparse Mixture of Expert)モデルは、言語モデリングにおける高密度モデルに代わるスケーラブルな代替品として登場した。
本研究は,SMoEアーキテクチャの設計に関する意思決定を行うために,タスク固有のモデルプルーニングについて検討する。
適応型タスク対応プルーニング手法 UNCURL を導入し,MoE 層当たりの専門家数をオフラインで学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-02T22:35:03Z) - Large Language Models are Biased Reinforcement Learners [0.0]
大規模言語モデル (LLM) は相対値バイアスの行動的シグネチャを示す。
計算的認知モデリングにより、LLMの挙動は単純なRLアルゴリズムによってよく記述されていることが明らかになった。
論文 参考訳(メタデータ) (2024-05-19T01:43:52Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
LVLM(Large Vision-Language Models)は、コンピュータビジョンや自然言語処理において欠かせないツールとなっている。
本研究は,入力画像に先行するLarge Language Models (LLM) の影響を主に受け,生成したコンテンツに有意なバイアスが生じることを示す。
これらのバイアスを是正し、視覚情報に対するモデルの焦点をリダイレクトするために、我々は2つの単純で訓練のない戦略を導入する。
論文 参考訳(メタデータ) (2024-03-08T12:35:07Z) - Taxonomy-based CheckList for Large Language Model Evaluation [0.0]
我々は、自然言語の介入に人間の知識を導入し、事前訓練された言語モデル(LM)の振る舞いを研究する。
CheckListの振る舞いテストに触発されて,LMの非倫理的行動の探索と定量化を目的としたチェックリストスタイルのタスクを提案する。
論文 参考訳(メタデータ) (2023-12-15T12:58:07Z) - Debiasing Algorithm through Model Adaptation [5.482673673984126]
因果解析を行い、問題のあるモデル成分を同定し、フィードフォワードの中間層が最も偏りを伝達しやすいことを明らかにする。
解析結果に基づいて,これらの層の重み行列に線形射影を適用することにより,モデルに介入する。
提案手法であるDAMAは,下流タスクにおけるモデルの性能を維持しながら,様々な指標によって測定されるバイアスを著しく低減する。
論文 参考訳(メタデータ) (2023-10-29T05:50:03Z) - Mind the instructions: a holistic evaluation of consistency and
interactions in prompt-based learning [14.569770617709073]
本稿では,どの設計選択が課題予測の不安定性や矛盾の原因となるかを詳細に分析する。
本稿では,入力分布とラベルの相関関係が,誘導モデルにのみ小さな問題となることを示す。
統計的に分析し、どの要因が最も影響力があり、インタラクティブで、安定したかを示す。
論文 参考訳(メタデータ) (2023-10-20T13:25:24Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
同定精度を高めるため,有効バイアス強調スコアリング法(ECS)を提案する。
また, マイニングされたバイアスアライメントとバイアスコンプリケート試料のコントリビューションのバランスをとるために, 勾配アライメント(GA)を提案する。
様々な環境で複数のデータセットで実験を行い、提案されたソリューションが未知のバイアスの影響を軽減することを実証した。
論文 参考訳(メタデータ) (2023-02-22T14:50:24Z) - Feature-Level Debiased Natural Language Understanding [86.8751772146264]
既存の自然言語理解(NLU)モデルは、特定のデータセットで高いパフォーマンスを達成するために、データセットバイアスに依存することが多い。
本稿では, バイアスの潜在特性を緩和し, バイアスの動的性質を無視するために, DCT(Debiasing contrastive learning)を提案する。
DCTは、ディストリビューション内のパフォーマンスを維持しながら、アウトオブディストリビューションデータセットの最先端のベースラインを上回ります。
論文 参考訳(メタデータ) (2022-12-11T06:16:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。